The development of methyl-transverse relaxation-optimized spectroscopy (methyl-TROSY)–based NMR methods, in concert with robust strategies for incorporation of methyl-group probes of structure and dynamics into the protein of interest, has facilitated quantitative studies of high-molecular-weight protein complexes. Here we develop a one-pot in vitro reaction for producing NMR quantities of methyl-labeled DNA at the C5 and N6 positions of cytosine (5mC) and adenine (6mA) nucleobases, respectively, enabling the study of high-molecular-weight DNA molecules using TROSY approaches originally developed for protein applications. Our biosynthetic strategy exploits the large number of naturally available methyltransferases to specifically methylate DNA at a desired number of sites that serve as probes of structure and dynamics. We illustrate the methodology with studies of the 153-base pair Widom DNA molecule that is simultaneously methyl-labeled at five sites, showing that high-quality13C-1H spectra can be recorded on 100 μM samples in a few minutes. NMR spin relaxation studies of labeled methyl groups in both DNA and the H2B histone protein component of the 200-kDa nucleosome core particle (NCP) establish that methyl groups at 5mC and 6mA positions are, in general, more rigid than Ile, Leu, and Val methyl probes in protein side chains. Studies focusing on histone H2B of NCPs wrapped with either wild-type DNA or DNA methylated at all 26 CpG sites highlight the utility of NMR in investigating the structural dynamics of the NCP and how its histone core is affected through DNA methylation, an important regulator of transcription.
The filamentous bacteriophage viruses of the Ff family, fd and M13, slightly differ in their genome, and their 50-residue-long major capsid proteins have a single site difference: the uncharged asparagine-12 in M13 is replaced with a negatively charged aspartate in fd. We have used magic-angle spinning solid-state NMR spectroscopy to site-specifically assign the resonances belonging to the capsid protein of M13. Assignment of several mobile residues was facilitated by using J-based spectroscopy, which in addition provided sugar-base contacts in the M13-DNA stemming from two-bond scalar couplings. A comparison between M13 and fd bacteriophages reveals that the two virions have a very conserved and stable structure, manifested in negligibly small chemical shift differences and similar dynamic properties for nearly all resonances. The principal difference between the two phages involves residues in the vicinity of residue 12. We suggest that the elimination of the single charge at position 12 throughout the entire assembly affects the electrostatic and hydrogen-bonding interaction network governing inter- and intraresidue contacts, mainly by the rearrangement of the positively charged lysine residue at position 8.
The fd bacteriophage is a filamentous virus consisting of a circular single-stranded DNA (ssDNA) wrapped by thousands of copies of a major coat protein subunit (the capsid). The coat protein subunits are mostly α-helical and curved, and are arranged in the capsid in consecutive pentamers related by a translation along the main viral axis and a rotation of ~36° (C5S2 symmetry). The DNA is right-handed and helical, but information on its structure and on its interface with the capsid is incomplete. We present here an approach for assigning the DNA nucleotides and studying its interactions with the capsid by magic-angle spinning solid-state NMR. Capsid contacts with the ssDNA are obtained using a two-dimensional (13)C-(13)C correlation experiment and a proton-mediated (31)P-(13)C polarization transfer experiment, both acquired on an aromatic-unlabeled phage sample. Our results allow us to map the residues that face the interior of the capsid and to show that the ssDNA-capsid interactions are sustained mainly by electrostatic interactions between the positively charged lysine side chains and the phosphate backbone. The use of natural abundance aromatic amino acids in the growth media facilitated the complete assignment of the four nucleotides and the observation of internucleotide contacts. Using chemical shift analysis, our study shows that structural features of the deoxyribose carbons reporting on the sugar pucker are strikingly similar to those observed recently for the Pf1 phage. However, the ssDNA-protein interface is different, and chemical shift markers of base pairing are different. This experimental approach can be utilized in other filamentous and icosahedral bacteriophages, and also in other biomolecular complexes involving structurally and functionally important DNA-protein interactions.
The fd bacteriophage is a filamentous virus that is widely used for bio- and nanotechnology applications ranging from phage display to battery materials. The possibility of obtaining a detailed description of its structural properties regardless of its state is therefore essential not only for understanding its physical arrangement and its bacterial infection process but also for many other applications. Here we present a study of the fd phage by magic-angle spinning solid-state NMR. While current structures rely on a Y21M mutant, experiments performed on a strain bearing a wild-type capsid report on high symmetry of the phage and lack of explicit subunit polymorphism. Chemical shift analysis confirmed that the coat protein mostly consists of a rigid right-handed curved α-helix (residues 6-47 of 50), preceded by a flexible loop-structured N-terminus. We were able to qualitatively assign the resonances belonging to the DNA, including the deoxyribose sugars and the thymine bases. These chemical shifts are consistent with base stacking and a C2'-endo/C3'-exo sugar pucker.
The icosahedral bacteriophage T7 is a 50 MDa double-stranded DNA (dsDNA) virus that infects Escherichia coli. Although there is substantial information on the physical and morphological properties of T7, structural information, based mostly on Raman spectroscopy and cryo-electron microscopy, is limited. Here, we apply the magic-angle spinning (MAS) solid-state NMR (SSNMR) technique to study a uniformly (13)C and (15)N labeled wild-type T7 phage. We describe the details of the large-scale preparation and purification of an isotopically enriched phage sample under fully hydrated conditions, and show a complete (13)C and a near-complete (15)N nucleotide-type specific assignment of the sugar and base moieties in the 40 kbp dsDNA of T7 using two-dimensional (13)C-(13)C and (15)N-(13)C correlation experiments. The chemical shifts are interpreted as reporters of a B-form conformation of the encapsulated dsDNA. While MAS SSNMR was found to be extremely useful in determining the structures of proteins in native-like environments, its application to nucleic acids has lagged behind, leaving a missing (13)C and (15)N chemical shift database. This work therefore expands the (13)C and (15)N database of real B-form DNA systems, and opens routes to characterize more complex nucleic acid systems by SSNMR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.