The neurotoxicity caused by methylmercury (MeHg) is well documented; however, the developmental neurotoxicity in spinal cord is still not fully understood. Here we investigated whether MeHg affects the spinal cord layers development. Chicken embryos at E3 were treated in ovo with 0.1 μg MeHg/50 μL saline solution and analyzed at E10. Thus, we performed immunostaining using anti-γ-H2A.X to recognize DNA double-strand breaks and antiphosphohistone H3, anti-p21, and anti-cyclin E to identify cells in proliferation and cell cycle proteins. Also, to identify neuronal cells, we used anti-NeuN and anti-βIII-tubulin antibodies. After the MeHg treatment, we observed the increase on γ-H2A.X in response to DNA damage. MeHg caused a decrease in the proliferating cells and in the thickness of spinal cord layers. Moreover, we verified that MeHg induced an increase in the number of p21-positive cells but did not change the cyclin E-positive cells. A significantly high number of TUNEL-positive cells indicating DNA fragmentation were observed in MeHg-treated embryos. Regarding the neuronal differentiation, MeHg induced a decrease in NeuN expression and did not change the expression of βIII-tubulin. These results showed that in ovo MeHg exposure alters spinal cord development by disturbing the cell proliferation and death, also interfering in early neuronal differentiation.
High levels of homocysteine (Hcy) are related to an increased risk of the occurrence of congenital anomalies, including limb defects. However, few evaluations about how toxic levels of Hcy affect limb development have been reported. We investigated whether Hcy can affect the cell cycle proteins and proteins involved in mesenchymal cell differentiation during limb development, in a chicken embryo model. Embryos were treated with 20 µmol d-l Hcy/50 µl saline at embryonic day 2 and analyzed at embryonic day 6. Untreated control embryos received exclusively 50 µl saline solution. To identify cells in proliferation and cell cycle proteins, as well as Pax1/9 and Sox9 proteins, we performed immunolocalization and flow cytometry analyses using the antibodies anti-phosphohistone H3, anti-p53, anti-p21, anti-proliferating cell nuclear antigen, anti-Pax1, anti-Pax9 and anti-Sox9. No significant differences in cell proliferation were observed between Hcy-treated and untreated embryos. We observed a decrease of the proliferating cell nuclear antigen and p21 proteins, both involved in the G1 phase of cell cycle progression. On the other hand, in mesenchymal cells of the limbs, Hcy induces an increase of p53 protein, which can be activated by DNA damage. In cell differentiation, Hcy induced an increase mainly of Pax9 and Sox9 proteins. Our data indicate that the treatment with Hcy changes the mesenchymal cell dynamics during limb development, but does not change the morphology of the cartilage molds. These findings provide information to understand better the cellular basis of the toxicity of Hcy on chondrogenesis during limb development.
Developmental endochondral ossification requires constant blood supply, which is provided by the embryonic vascular network. High levels of homocysteine (Hcy) have vasculotoxic properties, but it remains unclear how Hcy disrupts blood vessel formation in endochondral ossification. Thus, we investigated the toxicity of Hcy on contents of vasculogenic factors (VEGF, VCAM-1, NOS3) and osteocalcin, using developing limbs as model. Chicken embryos were submitted to treatment with 20 μmol D-L Hcy at 12H&H and the analyses occur at 29H&H and 36H&H. We did not identify differences in the area of limb ossification in Hcy-treated (7.5 × 10 μm ± 3.9 × 10) and untreated embryos (7.6 × 10 μm ± 3.3 × 10) at 36H&H. In Hcy-treated embryos, we observed a significantly decrease of 46.8% at 29H&H and 26.0% at 36H&H in the number of VEGF-reactive cells. Also, treated embryos showed decrease of 98.7% in VCAM-1-reactive cells at 29H&H and 34.6% at 36H&H. The number of NOS3-reactive cells was reduced 54.0% at 29H&H and 91.5% at 36H&H, in the limbs of Hcy-treated embryos. Finally, in Hcy-treated embryos at 36H&H, we observed a reduction of 58.86% in the number of osteocalcin-reactive cells. Here, we demonstrated for the first time that the toxicity of Hcy is associated with a reduction in the contents of proteins involved in blood vessel formation and bone mineralization, which interferes with endochondral ossification of the limb during embryonic development. Graphical abstract.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.