Although the exact role of quorum sensing (QS) in various stages of biofilm formation, maturation, and dispersal and in biofilm resistance is not entirely clear, the use of QS inhibitors (QSI) has been proposed as a potential antibiofilm strategy. We have investigated whether QSI enhance the susceptibility of bacterial biofilms to treatment with conventional antimicrobial agents. The QSI used in our study target the acylhomoserine lactone-based QS system present in Pseudomonas aeruginosa and Burkholderia cepacia complex organisms (baicalin hydrate, cinnamaldehyde) or the peptide-based system present in Staphylococcus aureus (hamamelitannin). The effect of tobramycin (P. aeruginosa, B. cepacia complex) and clindamycin or vancomycin (S. aureus), alone or in combination with QSI, was evaluated in various in vitro and in vivo biofilm model systems, including two invertebrate models and one mouse pulmonary infection model. In vitro the combined use of an antibiotic and a QSI generally resulted in increased killing compared to killing by an antibiotic alone, although reductions were strain and model dependent. A significantly higher fraction of infected Galleria mellonella larvae and Caenorhabditis elegans survived infection following combined treatment, compared to treatment with an antibiotic alone. Finally, the combined use of tobramycin and baicalin hydrate reduced the microbial load in the lungs of BALB/c mice infected with Burkholderia cenocepacia more than tobramycin treatment alone. Our data suggest that QSI may increase the success of antibiotic treatment by increasing the susceptibility of bacterial biofilms and/or by increasing host survival following infection.Biofilm-associated infections are often very difficult to treat with conventional antibiotics (7,17,28,38). Hence, novel targets are needed to combat biofilm infections. One of them could be the bacterial communication system (quorum sensing [QS]). Bacteria coordinate their cell-density-dependent gene expression by excreting small signaling molecules (26). When a certain extracellular threshold concentration is reached, these molecules bind to a receptor, thereby activating the QS system. The typical QS system in Gram-negative bacteria consists of three components: a LuxI synthase homolog, acyl-homoserinelactone (AHL) signaling molecules, and a LuxR receptor homolog (10). Gram-positive bacteria generally use small peptide signaling molecules, which are transported out of the cell and bind to a membrane-associated two-component receptor (42). Binding to the receptor activates a signal transduction system leading to the transcription of QS-regulated genes. A third QS system using autoinducer 2 (AI-2) as signaling molecule is widespread in both Gram-positive and Gram-negative bacteria and is considered to be responsible for interspecies communication (43). QS has been shown to regulate biofilm formation in several bacterial species (15,20). AHL QS mutants of Burkholderia cenocepacia and Pseudomonas aeruginosa form biofilms with a drastically altered str...
Biofilms are microbial sessile communities characterized by cells that are attached to a substratum or interface or to each other, are embedded in a self-produced matrix of extracellular polymeric substances and exhibit an altered phenotype compared to planktonic cells. Biofilms are estimated to be associated with 80% of microbial infections and it is currently common knowledge that growth of micro-organisms in biofilms can enhance their resistance to antimicrobial agents. As a consequence antimicrobial therapy often fails to eradicate biofilms from the site of infection. For this reason, innovative anti-biofilm agents with novel targets and modes of action are needed. One alternative approach is targeting the bacterial communication system (quorum sensing, QS). QS is a process by which bacteria produce and detect signal molecules and thereby coordinate their behavior in a cell-density dependent manner. Three main QS systems can be distinguished: the acylhomoserine lactone (AHL) QS system in Gram-negative bacteria, the autoinducing peptide (AIP) QS system in Gram-positive bacteria and the autoinducer-2 (AI-2) QS system in both Gram-negative and -positive bacteria. Although much remains to be learned about the involvement of QS in biofilm formation, maintenance, and dispersal, QS inhibitors (QSI) have been proposed as promising antibiofilm agents. In this article we will give an overview of QS inhibitors which have been shown to play a role in biofilm formation and/or maturation.
SUMMARY In many infections, bacteria form surface-associated communities known as biofilms that are substantially more resistant to antibiotics than their planktonic counterparts. Based on the design features of active anti-biofilm peptides, we made a series of related 12-amino acid L-, D- and retro-inverso derivatives. Specific D-enantiomeric peptides were the most potent at inhibiting biofilm development and eradicating pre-formed biofilms of seven species of wild-type and multiply antibiotic resistant Gram-negative pathogens. Moreover, these peptides showed strong synergy with conventional antibiotics, reducing the antibiotic concentrations required for complete biofilm inhibition by up to 64-fold. As shown previously for 1018, these D-amino acid peptides targeted the intracellular stringent response signal (p)ppGpp. The most potent peptides DJK-5 and DJK-6 protected invertebrates from lethal P. aeruginosa infections, and were considerably more active than a previously described L-amino acid peptide 1018. Thus, the protease resistant peptides produced here were more effective both in vitro and in vivo.
BackgroundTo date, only few compounds targeting the AI-2 based quorum sensing (QS) system are known. In the present study, we screened cinnamaldehyde and substituted cinnamaldehydes for their ability to interfere with AI-2 based QS. The mechanism of QS inhibition was elucidated by measuring the effect on bioluminescence in several Vibrio harveyi mutants. We also studied in vitro the ability of these compounds to interfere with biofilm formation, stress response and virulence of Vibrio spp. The compounds were also evaluated in an in vivo assay measuring the reduction of Vibrio harveyi virulence towards Artemia shrimp.ResultsOur results indicate that cinnamaldehyde and several substituted derivatives interfere with AI-2 based QS without inhibiting bacterial growth. The active compounds neither interfered with the bioluminescence system as such, nor with the production of AI-2. Study of the effect in various mutants suggested that the target protein is LuxR. Mobility shift assays revealed a decreased DNA-binding ability of LuxR. The compounds were further shown to (i) inhibit biofilm formation in several Vibrio spp., (ii) result in a reduced ability to survive starvation and antibiotic treatment, (iii) reduce pigment and protease production in Vibrio anguillarum and (iv) protect gnotobiotic Artemia shrimp against virulent Vibrio harveyi BB120.ConclusionCinnamaldehyde and cinnamaldehyde derivatives interfere with AI-2 based QS in various Vibrio spp. by decreasing the DNA-binding ability of LuxR. The use of these compounds resulted in several marked phenotypic changes, including reduced virulence and increased susceptibility to stress. Since inhibitors of AI-2 based quorum sensing are rare, and considering the role of AI-2 in several processes these compounds may be useful leads towards antipathogenic drugs.
bGram-negative bacteria use N-acyl homoserine lactones (AHLs) as quorum sensing (QS) signaling molecules for interspecies communication, and AHL-dependent QS is related with virulence factor production in many bacterial pathogens. Quorum quenching, the enzymatic degradation of the signaling molecule, would attenuate virulence rather than kill the pathogens, and thereby reduce the potential for evolution of drug resistance. In a previous study, we showed that Muricauda olearia Th120, belonging to the class Flavobacteriia, has strong AHL degradative activity. In this study, an AHL lactonase (designated MomL), which could degrade both short-and long-chain AHLs with or without a substitution of oxo-group at the C-3 position, was identified from Th120. Liquid chromatography-mass spectrometry analysis demonstrated that MomL functions as an AHL lactonase catalyzing AHL degradation through lactone hydrolysis. MomL is an AHL lactonase belonging to the metallo--lactamase superfamily that harbors an N-terminal signal peptide. The overall catalytic efficiency of MomL for C 6 -HSL is ϳ2.9 ؋ 10 5 s ؊1 M ؊1 . Metal analysis and site-directed mutagenesis showed that, compared to AiiA, MomL has a different metal-binding capability and requires the histidine and aspartic acid residues for activity, while it shares the "HXHXDH" motif with other AHL lactonases belonging to the metallo--lactamase superfamily. This suggests that MomL is a representative of a novel type of secretory AHL lactonase. Furthermore, MomL significantly attenuated the virulence of Pseudomonas aeruginosa in a Caenorhabditis elegans infection model, which suggests that MomL has the potential to be used as a therapeutic agent. N-Acyl homoserine lactones (AHLs) are quorum-sensing (QS) signaling molecules that are used by many Gram-negative bacteria to communicate within species, to regulate gene expression and to synchronize social behaviors, such as biofilm formation, bioluminescence, and secretion of virulence factors (1, 2). An AHL molecule typically consists of a homoserine lactone and an acyl chain with an even number of carbons, with an occasional modification (hydroxy or olefinic double bond) at the C-3 position (1). It has been well established that AHL-dependent QS regulates virulence factor production in many bacterial pathogens, such as Pseudomonas aeruginosa, Erwinia carotovora, Vibrio spp., and Burkholderia spp. (1). Interference with QS has been recognized as a promising antivirulence therapy. Disturbing the QS systems in these pathogens would attenuate virulence rather than kill the bacteria and thereby weaken the selective pressure imposed on the pathogens and reduce the potential for evolution of drug resistance (3). QS inhibitors (QSIs; small molecules) and quorum-quenching (QQ) enzymes can both be used to interfere with QS. QSIs generally act to inactivate autoinducer synthases or receptors through competitive binding, whereas QQ enzymes switch off signal transmission through degradation of the signaling molecules. It has been demonstrated th...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.