This paper considers the problem of inferring the causal effect of a variable Z on a survival time T . The error term of the model for T is correlated with Z, which leads to a confounding issue. Additionally, T is subject to dependent censoring, that is, T is right censored by a censoring time C which is dependent on T . In order to tackle the confounding issue, we leverage a control function approach relying on an instrumental variable W . Further, it is assumed that T and C follow a joint regression model with bivariate Gaussian error terms and an unspecified covariance matrix, allowing us to handle dependent censoring in a flexible manner. We derive conditions under which the model is identifiable, a two-step estimation procedure is proposed and we show that the resulting estimator is consistent and asymptotically normal. Simulations are used to confirm the validity and finite-sample performance of the estimation procedure. Finally, the proposed method is used to estimate the effectiveness of the Job Training Partnership Act (JTPA) programs on unemployment durations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.