The radical propagation kinetics of vinyl acetate (VAc) in pulsed laser polymerization (PLP) is studied by combining ab initio calculated rate coefficients for propagation of head, tail and mid-chain radicals, and backbiting reactions with kinetic Monte Carlo modeling of PLP spectra. The intriguing laser pulse frequency dependency of the propagation kinetics is shown to be mainly caused by the formation of stabilized mid-chain radicals via backbiting of tail radicals, originating from head-to-head propagation. These mid-chain radicals are approximately 35 times less reactive towards propagation at 323 K which, in agreement with experimental observations, results in a 15% increase of the observed propagation rate coefficient if the laser pulse frequency is increased from low (25-100 s −1
The thiol-Michael addition of ethanethiol to ethyl acrylate, methyl vinylsulfone and maleimide initiated by ethyl-, diethyl-, triethylamine and triethylphosphine in tetrahydrofuran (THF) is investigated at room temperature.
This work presents a detailed computational study and kinetic analysis of the aza-Michael addition of primary and secondary amines to acrylates in an aprotic solvent. Accurate rate coefficients for all elementary steps in the various competing mechanisms are calculated using an ONIOM-based approach in which the full system is calculated with M06-2X/6-311+G(d,p) and the core system with CBS-QB3 corrected for solvation using COSMO-RS. Diffusional contributions are taken into account using the coupled encounter pair model with diffusion coefficients calculated based on molecular dynamics simulations. The calculated thermodynamic and kinetic parameters for all forward and reverse elementary reactions are fed to a microkinetic model giving excellent agreement with experimental data obtained using GC analysis. Rate analysis reveals that for primary and secondary amines, the aza-Michael addition to ethyl acrylate occurs preferentially according to a 1,2-addition mechanism, consisting of the pseudoequilibrated formation of a zwitterion followed by a rate controlling amine assisted proton transfer toward the singly substituted product. The alternative 1,4-addition becomes competitive if substituents are present on the amine or double bond of the acrylate. Primary amines react faster than secondary amines due to increased solvation of the zwitterionic intermediate and less sterically hindered proton transfer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.