Commercial wheat, corn and rice starch were extrusion cooked under a specific mechanical energy input (SME) ranging from 81 to 365 Wh/kg (288 to 1314 kJ/kg). Extrusion cooking at low and high SME resulted in products having significant differences in molecular weight distribution and having crystalline structures of the V-and E-type, as determined by gel permeation chromatography and X-ray diffraction analysis. Differential scanning calorimetry revealed that the glass transition temperature (T g ) of the extruded starches was independent of the botanical source, the degree of extrusion-induced molecular fragmentation and the formation of the V-and E-type crystalline structures. The obtained master curve, defined by the relationship between water content and T g of the amorphous starch, may be used as a predictive tool in modelling the extrusion process of starch or starch containing blends, especially with regard to the formation of the morphological structure and texture attributes of directly expanded products.
An in-line viscometer was designed and constructed to enable determination of the shear stress of plasticised wheat starch during extrusion cooking. The viscometer was installed between the end of the barrel section and the extruder die plate so that the shear stress could be determined for the plasticised material, irrespective of the geometrical shape into which it was subsequently moulded by the extruder die. The extrusion conditions were described in terms of the process parameters, i. e. water content, barrel temperature, screw speed and screw configuration; and of the system parameters, which were the specific mechanical energy input (SME), product temperature (PT) and mean residence time (MRT). The parameters were measured and the results evaluated using statistical methods. Regression equations were used to describe functional relationships between the shear stress and the extrusion conditions on the one hand, and between the shear stress and the product characteristics of the extrudates on the other. The shear stress of plasticised wheat starch determined in-line can be used to predict the morphological structure (volumetric expansion) and the functional properties (cold paste viscosity and cold water solubility) of extruded, directly expanded starch with a high degree of accuracy. The measurement technique used and the results of the extrusion tests undertaken for this project will therefore enable the shear stress of plasticised material in an extruder to be used as the principle parameter for controlling extruders on-line.
The configuration of the twin-screw laboratory extruder (Bühler AG, Uzwil, Switzerland, type DNDL-44) and the in-line viscometer used for the determination and on-line measurement of the shear stress of the plasticised materials have already been described [1,2].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.