Tailoring the interaction between light and sound has opened new possibilities in photonic integrated circuits (PICs) that range from achieving quantum control of light to high-speed information processing. However, the actuation of sound waves in Si PICs usually requires integration of a piezoelectric thin film. Lead zirconate titanate (PZT) is a promising material due to its strong piezoelectric and electromechanical coupling coefficient. Unfortunately, the traditional methods to grow PZT on silicon are detrimental for photonic applications due to the presence of an optical lossy intermediate layer. In this work, we report integration of a high quality PZT thin film on a silicon-on-insulator (SOI) photonic chip using an optically transparent buffer layer. We demonstrate acousto-optic modulation in silicon waveguides with the PZT actuated acoustic waves. We fabricate interdigital transducers (IDTs) on the PZT film with a contact photolithography and electron-beam lithography to generate the acoustic waves in MHz and GHz ranges, respectively. We obtain a V π L ∼ 3.35 V•cm at 576 MHz from a 350 nm thick gold (Au) IDT with 20 finger-pairs. After taking the effect of mass-loading and grating reflection into account, we measured a V π L ∼ 3.60 V•cm at 2 GHz from a 100 nm thick aluminum (Al) IDT consisting of only four finger-pairs. Thus, without patterning the PZT film nor suspending the device, we obtained figures-of-merit comparable to state-of-the-art modulators based on SOI, making it a promising candidate for a broadband and efficient acousto-optic modulator for future integration.
Second-order nonlinear optical processes enable a wide range of applications used in research and industry. The majority of available second-order nonlinear devices however relies on bulk nonlinear crystals with low second-order nonlinearity. By exploiting the advancements made in integrated optics, materials with large second-order nonlinearity could enable efficient and small-sized on-chip nonlinear devices at low cost. Unfortunately, silicon and silicon nitride, mostly used for photonics integrated circuits exhibit negligible second-order nonlinearity (χ (2) )and alternate materials have to be investigated. PZT thin films with high second-order nonlinearity stand as a good candidate for on-chip nonlinearity. We demonstrate here an electric-field induced tuning of χ (2) in PZT thin films grown on glass substrates with a tuning efficiency of 3.35 pmV -2 . We record strong second-harmonic generation and report a very high dominant tensor component ( ) of 128 pmV -1 . The χ (2) of our PZT thin films can be reversed by poling with a DC electric field at room temperature. This opens avenues for highly efficient and tunable on-chip nonlinear devices.
We demonstrate a hybrid PZT/Si Pockels modulator. The PZT is grown on the waveguides and the resulting device shows low-loss and a VπL ≈ 2Vcm with an effective Pockels coefficient of 225pm/V.
No abstract
Phase modulators are key building blocks for Photonic Integrated Circuits (PICs). Si modulators based on plasma dispersion suffer from spurious amplitude modulation and high insertion losses. Pockels effect has been explored for more efficient phase modulators. However, Si doesn't exhibit Pockels effect due to its centrosymmetric structure. Co-integration of thin-film electro-optic materials possessing a strong linear electro-optic coefficient on Si has therefore been proposed as an ideal alternative for more efficient phase modulators. Strongly electro-optic thin films of ferro-electric Lead Zirconate Titanate (PZT) grown on Si waveguides allow for Hybrid PZT/Si phase modulators. We present here a TE/TM electro-optic modulator with bias-free operation, bandwidths beyond 10Ghz, and negligible spurious amplitude modulation. The modulator is a phase shifter which comprises of straight Si waveguides and thin films of PZT spin-coated on the waveguides. The phase shifters were experimentally characterized by beating the modulated signal with an external acousto-optic modulator and evaluating the ratio between both signals. This experiment enables fast and easy characterization of phase modulators as proof of concept
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.