Different attempts have been made to directly measure frequency specific basilar membrane ͑BM͒ delays in animals, e.g., laser velocimetry of BM vibrations and auditory nerve fiber recordings. The present study uses otoacoustic emissions ͑OAEs͒ and auditory brainstem responses ͑ABRs͒ to estimate BM delay non-invasively in normal-hearing humans. Tone bursts at nine frequencies from 0.5 to 8 kHz served as stimuli, with care taken to quantify possible bias due to the use of tone bursts with different rise times. BM delays are estimated from the ABR latency estimates by subtracting the neural and synaptic delays. This allows a comparison between individual OAE and BM delays over a large frequency range in the same subjects, and offers support to the theory that OAEs are reflected from a tonotopic place and carried back to the cochlear base via a reverse traveling wave.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.