During a ballistic impact, the protective material that plays the role of armour has to dissipate the kinetic energy in order to limit the projectile penetration in the target. Our aim is to emphasis on the role played by a liquid-filled system on the impact energy mitigation due to cavitation inception and later bubble expansion. To observe this, small scale experiments have been carried out on a three layers sample (Aluminium-Water-PMMA) submitted to shock waves induced by laser impact applied on the Al face. Rapid camera visualizations allow reproducing, at small scale, the effects of projectiles on armours for various monitored impact energies. We observe the formation of bubbles for sufficiently intense impacts due to traction effects in the water caused by the multiple reflections of waves within the sample. The cavitation threshold of water under dynamic loading is then experimentally investigated for two samples: one with 600 μm thick Al / 400 μm of water and 3 mm of PMMA, the other with 1000 μm thick Al / 1600 μm of water and 3 mm of PMMA. Using dimensional analysis, we show that the energy taken during the process of inception and bubble expansion becomes more important as the energy of the impact increases.
In this paper, we review practical limitations to laser space propulsion that have been discussed in the literature. These are as follows: (1) thermal coupling to the propelled payload, which might melt it; (2) a decrease in mechanical coupling with number of pulses, which has been observed in some cases; and (3) destruction of solar panels in debris removal proposals that might create more debris rather than less. Previously, lack of data prevented definite assessments. Now, new data on multipulse vacuum laser impulse coupling coefficient C m on several materials at 1064 nm, at 1030 nm, and at 532 nm are available. We are now able to compare the results for single and multiple pulses on materials that have been considered for laser ablation space propulsion (LASP), or that are likely space debris constituents, and decide whether LASP is a practical idea. Laser space propulsion and debris removal concepts depend on thousands or hundreds of thousands of repetitive pulses. Repetitive pulse mechanical coupling as well as thermal coupling (which can melt the target rather than propel it) are both important considerations. Materials studied were 6061T6 aluminum, carbon-doped polyoxymethylene (POM), undoped POM, a yellow POM copolymer, and a mixture of Al and POM microparticles combined and pressed, containing a 50%/50% mixture of the two materials by mass. We address 6 and 70 ps pulses because of the availability of data at these pulse durations. We also briefly consider continuous wave (CW) laser propulsion. Finally, we consider a recent paper concerning solar panel destruction from a positive perspective.
Societal concerns on security push light weight armor for ballistic protection to remain a topic of interest. Ultra-High Molecular Weight Polyethylene composites (UHMWPE) have shown appreciable performances for ballistic protection, because of their ability to mitigate kinetic energy of projectiles by various mechanisms of dissipation and because of their lower density. Among dissipative mechanisms of interest, delamination is one of them. In order estimate the bond strength between two plies, the laser induced shock wave technique has been utilized on Tensylon® thin panels. Firstly, this paper introduces this technique and its capabilities with respect to the characterization of ballistic protections at very high strain rates (10 6 s À1 ). Secondly, a set of experimental results is shown and interpreted to obtain the interply bond strength, through the spallation process. At last, experimental results are supported by a numerical model that is in the verge of being a predictive tool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.