We consider the multiple change-point problem for multivariate time series, including strongly dependent processes, with an unknown number of change-points. We assume that the covariance structure of the series changes abruptly at some unknown common change-point times. The proposed adaptive method is able to detect changes in multivariate i.i.d., weakly and strongly dependent series. This adaptive method outperforms the Schwarz criteria, mainly for the case of weakly dependent data. We consider applications to multivariate series of daily stock indices returns and series generated by an artificial financial market.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.