The increasing penetration rate of electric vehicles, associated with a growing charging demand, could induce a negative impact on the electric grid, such as higher peak power demand. To support the electric grid, and to anticipate those peaks, a growing interest exists for forecasting the day-ahead charging demand of electric vehicles. This paper proposes the enhancement of a state-of-the-art deep neural network to forecast the day-ahead charging demand of electric vehicles with a time resolution of 15 min. In particular, new features have been added on the neural network in order to improve the forecasting. The forecaster is applied on an important use case of a local charging site of a hospital. The results show that the mean-absolute error (MAE) and root-mean-square error (RMSE) are respectively reduced by 28.8% and 19.22% thanks to the use of calendar and weather features. The main achievement of this research is the possibility to forecast a high stochastic aggregated EV charging demand on a day-ahead horizon with a MAE lower than 1 kW.
Increasing penetration of electric vehicles brings a set of challenges for the electricity system related to its energy, power and balance adequacy. Research related to this topic often requires estimates of charging demand in various forms to feed various models and simulations. This paper proposes a methodology to simulate charging demand for different driver types in a local energy system in the form of time series of charging sessions. The driver types are extracted from historical charging session data via data mining techniques and then characterized using a kernel density estimation process. The results show that the methodology is able to capture the stochastic nature of the drivers’ charging behavior in time, frequency and energy demand for different types of drivers, while respecting aggregated charging demand. This is essential when studying the energy balance of a local energy system and allows for calculating future demand scenarios by compiling driver population based on number of drivers per driver type. The methodology is then tested on a simulator to assess the benefits of smart charging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.