BackgroundHeadache disorders are an important health burden, having a large health-economic impact worldwide. Current treatment & follow-up processes are often archaic, creating opportunities for computer-aided and decision support systems to increase their efficiency. Existing systems are mostly completely data-driven, and the underlying models are a black-box, deteriorating interpretability and transparency, which are key factors in order to be deployed in a clinical setting.MethodsIn this paper, a decision support system is proposed, composed of three components: (i) a cross-platform mobile application to capture the required data from patients to formulate a diagnosis, (ii) an automated diagnosis support module that generates an interpretable decision tree, based on data semantically annotated with expert knowledge, in order to support physicians in formulating the correct diagnosis and (iii) a web application such that the physician can efficiently interpret captured data and learned insights by means of visualizations.ResultsWe show that decision tree induction techniques achieve competitive accuracy rates, compared to other black- and white-box techniques, on a publicly available dataset, referred to as migbase. Migbase contains aggregated information of headache attacks from 849 patients. Each sample is labeled with one of three possible primary headache disorders. We demonstrate that we are able to reduce the classification error, statistically significant (ρ≤0.05), with more than 10% by balancing the dataset using prior expert knowledge. Furthermore, we achieve high accuracy rates by using features extracted using the Weisfeiler-Lehman kernel, which is completely unsupervised. This makes it an ideal approach to solve a potential cold start problem.ConclusionDecision trees are the perfect candidate for the automated diagnosis support module. They achieve predictive performances competitive to other techniques on the migbase dataset and are, foremost, completely interpretable. Moreover, the incorporation of prior knowledge increases both predictive performance as well as transparency of the resulting predictive model on the studied dataset.
The advent of Internet-of-Things (IoT) applications, such as environmental monitoring, smart cities, and home automation, has taken the IoT concept from hype to reality at a massive scale. However, more mission-critical application areas such as energy, security and health care do not only demand low-power connectivity, but also highly reliable and guaranteed performance. While fulfilling these requirements under controlled conditions such as urban and indoor environments is relatively trivial, tackling the same obstacles in a more challenging and dynamic setting is significantly more complicated. In environments where infrastructure is sparse, such as rural or remote areas, specialized infrastructure-less ad-hoc solutions are needed, which provide long-range multi-hop connectivity to remote sensors and actuators. In this paper we propose a new general-purpose IoT platform based on a combination of Low-power Wireless Personal Area Network (LoWPAN) and multi-hop Wireless Sensor Network (WSN) technology. It supports reliable and guaranteed realtime data dissemination and analysis, as well as actuator control, in dynamic and challenging infrastructure-less environments. In this paper, we present the IoT platform architecture and an initial hard-and software prototype. Moreover, a use case based on realtime monitoring and training adaptation for cyclists is presented. Based on this case study, evaluation results are presented that show the ability of the proposed platform to operate under challenging and dynamic conditions.
At the end of 2019, Chinese authorities alerted the World Health Organization (WHO) of the outbreak of a new strain of the coronavirus, called SARS-CoV-2, which struck humanity by an unprecedented disaster a few months later. In response to this pandemic, a publicly available dataset was released on Kaggle which contained information of over 63,000 papers. In order to facilitate the analysis of this large mass of literature, we have created a knowledge graph based on this dataset. Within this knowledge graph, all information of the original dataset is linked together, which makes it easier to search for relevant information. The knowledge graph is also enriched with additional links to appropriate, already existing external resources. In this paper, we elaborate on the different steps performed to construct such a knowledge graph from structured documents. Moreover, we discuss, on a conceptual level, several possible applications and analyses that can be built on top of this knowledge graph. As such, we aim to provide a resource that allows people to more easily build applications that give more insights into the COVID-19 pandemic.
Purpose: To predict the session rating of perceived exertion (sRPE) in soccer and determine its main predictive indicators. Methods: A total of 70 external-load indicators (ELIs), internal-load indicators, individual characteristics, and supplementary variables were used to build a predictive model. Results: The analysis using gradient-boosting machines showed a mean absolute error of 0.67 (0.09) arbitrary units (AU) and a root-mean-square error of 0.93 (0.16) AU. ELIs were found to be the strongest predictors of the sRPE, accounting for 61.5% of the total normalized importance (NI), with total distance as the strongest predictor. The included internal-load indicators and individual characteristics accounted only for 1.0% and 4.5%, respectively, of the total NI. Predictive accuracy improved when including supplementary variables such as group-based sRPE predictions (10.5% of NI), individual deviation variables (5.8% of NI), and individual player markers (17.0% of NI). Conclusions: The results showed that the sRPE can be predicted quite accurately using only a relatively limited number of training observations. ELIs are the strongest predictors of the sRPE. However, it is useful to include a broad range of variables other than ELIs, because the accumulated importance of these variables accounts for a reasonable component of the total NI. Applications resulting from predictive modeling of the sRPE can help coaching staff plan, monitor, and evaluate both the external and internal training load.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.