On the basis of the reported radical neutral complex [Au(Et-thiazdt)(2)] (Et-thiazdt = N-ethyl-1,3-thiazoline-2-thione-4,5-dithiolate), a series of single-component conductors derived from [Au(Et-thiazdt)(2)], also noted as [AuS(4)(═S)(2)], has been developed, by replacing the outer sulfur atoms of the thiazoline-2-thione rings by oxygen atoms and/or by replacing the coordinating sulfur atoms by selenium atoms toward the corresponding diselenolene complexes. Comparison of the X-ray crystal structures and transport properties of the four isostructural complexes, noted as [AuS(4)(═S)(2)], [AuS(4)(═O)(2)], [AuSe(4)(═S)(2)], and [AuSe(4)(═O)(2)], shows that the oxygen substitution on the outer thiazoline ring actually decreases the conductivity by a factor of 100, despite a contracted unit cell volume reflecting a positive chemical pressure effect. On the other hand, the S/Se substitution increases the conductivity by a factor of 100, and the pressure needed to transform these semiconductors into the metallic state is shifted from 13 kbar in [AuS(4)(═S)(2)] to only ≈6 kbar in [AuSe(4)(═S)(2)]. Analysis of unit cell evolutions and ab initio band structure calculations demonstrates the strongly anisotropic nature of this chemical pressure effect and provides an explanation for the observed changes in conductivity. The greater sensitivity of these neutral single-component conductors to external pressure, as compared with "classical" radical salts, is also highlighted.
A series of 2,7-dipyridylfluorene
derivatives have been synthesized
with different substituents (2H, 2Me, 2OMe, 2CF3, and O)
at the C(9) position. Experimental measurements on gold|single-molecule|gold
junctions, using a modified scanning tunneling microscope-break-junction
technique, show that the C(9) substituent has little effect on the
conductance, although there is a more significant influence on the
thermopower, with the Seebeck coefficient varying by a factor of 1.65
within the series. The combined experimental and computational study,
using density functional theory calculations, provides insights into
the interplay of conductance and thermopower in single-molecule junctions
and is a guide for new strategies for thermopower modulation in single-molecule
junctions.
Tetrathiafulvalene (TTF) monolayers covalently bound to oxide-free hydrogen-terminated Si(100) surfaces have been prepared from the hydrosilylation reaction involving a TTF-terminated ethyne derivative. FTIR spectroscopy characterization using similarly modified porous Si(100) substrates revealed the presence of vibration bands assigned to the immobilized TTF rings and the Si-C═C- interfacial bonds. Cyclic voltammetry measurements showed the presence of two reversible one-electron systems ascribed to TTF/TTF(.+) and TTF(.+)/TTF(2+) redox couples at ca. 0.40 and 0.75 V vs SCE, respectively, which compare well with the values determined for the electroactive molecule in solution. The amount of immobilized TTF units could be varied in the range from 1.7 × 10(-10) to 5.2 × 10(-10) mol cm(-2) by diluting the TTF-terminated chains with inert n-decenyl chains. The highest coverage obtained for the single-component monolayer is consistent with a densely packed TTF monolayer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.