This paper presents a methodology for using varying sample sizes in batch-type optimization methods for large scale machine learning problems. The first part of the paper deals with the delicate issue of dynamic sample selection in the evaluation of the function and gradient. We propose a criterion for increasing the sample size based on variance estimates obtained during the computation of a batch gradient. We establish an O(1/ ) complexity bound on the total cost of a gradient method. The second part of the paper describes a practical Newton method that uses a smaller sample to compute Hessian vector-products than to evaluate the function and the gradient, and that also employs a dynamic sampling technique. The focus of the paper shifts in the third part of the paper to L 1 regularized problems designed to produce sparse solutions. We propose a Newton-like method that consists of two phases: a (minimalistic) gradient projection phase that identifies zero variables, and subspace phase that applies a subsampled Hessian Newton iteration in the free variables. Numerical tests on speech recognition problems illustrate the performance of the algorithms.
This paper describes how to incorporate sampled curvature information in a Newton-CG method and in a limited memory quasi-Newton method for statistical learning. The motivation for this work stems from supervised machine learning applications involving a very large number of training points. We follow a batch approach, also known in the stochastic optimization literature as a sample average approximation (SAA) approach. Curvature information is incorporated in two sub-sampled Hessian algorithms, one based on a matrix-free inexact Newton iteration and one on a preconditioned limited memory BFGS iteration. A crucial feature of our technique is that Hessian-vector multiplications are carried out with a significantly smaller sample size than is used for the function and gradient. The efficiency of the proposed methods is illustrated using a machine learning application involving speech recognition.
A variety of first-order methods have recently been proposed for solving matrix optimization problems arising in machine learning. The premise for utilizing such algorithms is that second order information is too expensive to employ, and so simple first-order iterations are likely to be optimal. In this paper, we argue that second-order information is in fact efficiently accessible in many matrix optimization problems, and can be effectively incorporated into optimization algorithms. We begin by reviewing how certain Hessian operations can be conveniently represented in a wide class of matrix optimization problems, and provide the first proofs for these results. Next we consider a concrete problem, namely the minimization of the regularized Jeffreys divergence, and derive formulae for computing Hessians and Hessian vector products. This allows us to propose various second order methods for solving the Jeffreys divergence problem. We present extensive numerical results illustrating the behavior of the algorithms and apply the methods to a speech recognition problem. We compress full covariance Gaussian mixture models utilized for acoustic models in automatic speech recognition. By discovering clusters of (sparse inverse) covariance matrices, we can compress the number of covariance parameters by a factor exceeding 200, while still outperforming the word error rate (WER) performance of a diagonal covariance model that has 20 times less covariance parameters than the original acoustic model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.