Background: Perivascular spaces (PVS) are an important component of cerebral small vessel disease (SVD), several inflammatory disorders, hypertension and blood-brain barrier breakdown, but are difficult to quantify. A recent international collaboration of SVD experts has highlighted the need for a robust, easy-to-use PVS rating scale for the effective investigation of the diagnostic and prognostic significance of PVS. The purpose of the current study was to develop and extend existing PVS scales to provide a more comprehensive scale for the measurement of PVS in the basal ganglia, centrum semiovale and midbrain, and to test its intra- and inter-rater agreement, assessing reasons for discrepancy. Methods: We reviewed previously published PVS scales, including site of PVS assessed, rating method, and size and morphological criteria. Retaining key features, we devised a more comprehensive scale in order to improve the reliability of PVS rating. Two neuroradiologists tested the new scale in MRI brain scans of 60 patients from two studies (stroke, ageing population), chosen to represent a full range of PVS, and demonstrating concomitant features of SVD such as lacunes and white matter hyperintensities. We rated basal ganglia, centrum semiovale, and midbrain PVS. Basal ganglia and centrum semiovale PVS were rated 0 (none), 1 (1-10), 2 (11-20), 3 (21-40) and 4 (>40), and midbrain PVS were rated 0 (none visible) or 1 (visible). We calculated kappa statistics for rating, assessed consistency in use of PVS categories (Bhapkar test) and reviewed sources of discrepancy. Results: Intra- and inter-rater kappa statistics were highest for basal ganglia PVS (range 0.76-0.87 and 0.8-0.9, respectively) than for centrum semiovale PVS (range 0.68-0.75 and 0.61-0.8, respectively) or midbrain PVS (inter-rater range 0.51-0.52). Inter-rater consistency was better for basal ganglia compared to centrum semiovale PVS (Bhapkar statistic 2.49-3.72, compared to 6.79-21.08, respectively). Most inter-rater disagreements were due to very faint PVS, coexisting extensive white matter hyperintensities (WMH) or the presence of lacunes. Conclusions: We developed a more inclusive and robust visual PVS rating scale allowing rating of all grades of PVS severity on structural brain imaging. The revised PVS rating scale has good observer reliability for basal ganglia and centrum semiovale PVS, best for basal ganglia PVS, and moderate reliability for midbrain PVS. Agreement is influenced by PVS severity and the presence of background features of SVD. The current scale can be used in further studies to assess the clinical implications of PVS.
Background and aimsEnlarged perivascular spaces (also known as Virchow–Robin spaces) on T2-weighted brain magnetic resonance imaging are common, but their etiology, and specificity to small vessel as opposed to general cerebrovascular disease or ageing, is unclear. We tested the association between enlarged perivascular spaces and ischemic stroke subtype, other markers of small vessel disease, and common vascular risk factors.MethodsWe prospectively recruited patients with acute stroke, diagnosed and subtyped by a stroke physician using clinical features and brain magnetic resonance imaging. A neuroradiologist rated basal ganglia and centrum semiovale enlarged perivascular spaces on a five-point scale, white matter lesions, recent and old infarcts, and cerebral atrophy. We assessed associations between basal ganglia-, centrum semiovale- and total (combined basal ganglia and centrum semiovale) enlarged perivascular spaces, stroke subtype, white matter lesions, atrophy, and vascular risk factors.ResultsAmong 298 patients (mean age 68 years), after adjusting for vascular risk factors and white matter lesions, basal ganglia–enlarged perivascular spaces were associated with increasing age (P = 0·001), centrum semiovale–enlarged perivascular spaces (P < 0·001), cerebral atrophy (P = 0·03), and lacunar stroke subtype (P = 0·04). Centrum semiovale–enlarged perivascular spaces were associated mainly with basal ganglia–enlarged perivascular spaces. Total enlarged perivascular spaces were associated with increasing age (P = 0·01), deep white matter lesions (P = 0·005), and previous stroke (P = 0·006).ConclusionsEnlarged perivascular spaces are associated with age, lacunar stroke subtype and white matter lesions and should be considered as another magnetic resonance imaging marker of cerebral small vessel disease. Further evaluation of enlarged perivascular spaces in studies of ageing, stroke, and dementia is needed to determine their pathophysiological importance.
Background and Purpose-If the diagnostic and prognostic significance of brain microbleeds (BMBs) are to be investigated and used for these purposes in clinical practice, observer variation in BMB assessment must be minimized. Methods-Two doctors used a pilot rating scale to describe the number and distribution of BMBs (round, low-signal lesions, Ͻ10 mm diameter on gradient echo MRI) among 264 adults with stroke or TIA.
SummaryBackgroundBrain scans are essential to exclude haemorrhage in patients with suspected acute ischaemic stroke before treatment with alteplase. However, patients with early ischaemic signs could be at increased risk of haemorrhage after alteplase treatment, and little information is available about whether pre-existing structural signs, which are common in older patients, affect response to alteplase. We aimed to investigate the association between imaging signs on brain CT and outcomes after alteplase.MethodsIST-3 was a multicentre, randomised controlled trial of intravenous alteplase (0·9 mg/kg) versus control within 6 h of acute ischaemic stroke. The primary outcome was independence at 6 months (defined as an Oxford Handicap Scale [OHS] score of 0–2). 3035 patients were enrolled to IST-3 and underwent prerandomisation brain CT. Experts who were unaware of the random allocation assessed scans for early signs of ischaemia (tissue hypoattenuation, infarct extent, swelling, and hyperattenuated artery) and pre-existing signs (old infarct, leukoaraiosis, and atrophy). In this prespecified analysis, we assessed interactions between these imaging signs, symptomatic intracranial haemorrhage (a secondary outcome in IST-3) and independence at 6 months, and alteplase, adjusting for age, National Institutes of Health Stroke Scale (NIHSS) score, and time to randomisation. This trial is registered at ISRCTN.com, number ISRCTN25765518.Findings3017 patients were assessed in this analysis, of whom 1507 were allocated alteplase and 1510 were assigned control. A reduction in independence was predicted by tissue hypoattenuation (odds ratio 0·66, 95% CI 0·55–0·81), large lesion (0·51, 0·38–0·68), swelling (0·59, 0·46–0·75), hyperattenuated artery (0·59, 0·47–0·75), atrophy (0·74, 0·59–0·94), and leukoaraiosis (0·72, 0·59–0·87). Symptomatic intracranial haemorrhage was predicted by old infarct (odds ratio 1·72, 95% CI 1·18–2·51), tissue hypoattenuation (1·54, 1·04–2·27), and hyperattenuated artery (1·54, 1·03–2·29). Some combinations of signs increased the absolute risk of symptomatic intracranial haemorrhage (eg, both old infarct and hyperattenuated artery, excess with alteplase 13·8%, 95% CI 6·9–20·7; both signs absent, excess 3·2%, 1·4–5·1). However, no imaging findings—individually or combined—modified the effect of alteplase on independence or symptomatic intracranial haemorrhage.InterpretationSome early ischaemic and pre-existing signs were associated with reduced independence at 6 months and increased symptomatic intracranial haemorrhage. Although no interaction was noted between brain imaging signs and effects of alteplase on these outcomes, some combinations of signs increased some absolute risks. Pre-existing signs should be considered, in addition to early ischaemic signs, during the assessment of patients with acute ischaemic stroke.FundingUK Medical Research Council, Health Foundation UK, Stroke Association UK, Chest Heart Stroke Scotland, Scottish Funding Council SINAPSE Collaboration, and multiple governmental an...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.