In this paper, we propose to use spectral proximal method to solve sparse optimization problems. Sparse optimization refers to an optimization problem involving the ι0 -norm in objective or constraints. The previous research showed that the spectral gradient method is outperformed the other standard unconstrained optimization methods. This is due to spectral gradient method replaced the full rank matrix by a diagonal matrix and the memory decreased from Ο(n2) to Ο(n). Since ι0-norm term is nonconvex and non-smooth, it cannot be solved by standard optimization algorithm. We will solve the ι0 -norm problem with an underdetermined system as its constraint will be considered. Using Lagrange method, this problem is transformed into an unconstrained optimization problem. A new method called spectral proximal method is proposed, which is a combination of proximal method and spectral gradient method. The spectral proximal method is then applied to the ι0-norm unconstrained optimization problem. The programming code will be written in Python to compare the efficiency of the proposed method with some existing methods. The benchmarks of the comparison are based on number of iterations, number of functions call and the computational time. Theoretically, the proposed method requires less storage and less computational time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.