The gene encoding the receptor-tyrosine kinase RET was first discovered more than three decades ago, and activating RET rearrangements and mutations have since been identified as actionable drivers of oncogenesis. Several multikinase inhibitors with activity against RET have been explored in the clinic, and confirmed responses to targeted therapy with these agents have been observed in patients with RET-rearranged lung cancers or RET-mutant thyroid cancers. Nevertheless, response rates to RET-directed therapy are modest compared with those achieved using targeted therapies matched to other oncogenic drivers of solid tumours, such as sensitizing EGFR or BRAF mutations, or ALK or ROS1 rearrangements. To date, no RET-directed targeted therapeutic has received regulatory approval for the treatment of molecularly defined populations of patients with RET-mutant or RET-rearranged solid tumours. In this Review, we discuss how emerging data have informed the debate over whether the limited success of multikinase inhibitors with activity against RET can be attributed to the tractability of RET as a drug target or to the lack, until 2017, of highly specific inhibitors of this oncoprotein in the clinic. We emphasize that novel approaches to targeting RET-dependent tumours are necessary to improve the clinical efficacy of single-agent multikinase inhibition and, thus, hasten approvals of RET-directed targeted therapies.
Purpose Mesenchymal epithelial transition factor ( MET) activation has been implicated as an oncogenic driver in epidermal growth factor receptor ( EGFR)–mutant non–small-cell lung cancer (NSCLC) and can mediate primary and secondary resistance to EGFR tyrosine kinase inhibitors (TKI). High copy number thresholds have been suggested to enrich for response to MET inhibitors. We examined the clinical relevance of MET copy number gain (CNG) in the setting of treatment-naive metastatic EGFR-mutant–positive NSCLC. Patients and Methods MET fluorescence in situ hybridization was performed in 200 consecutive patients identified as metastatic treatment-naïve EGFR-mutant–positive. We defined MET-high as CNG greater than or equal to 5, with an additional criterion of MET/centromeric portion of chromosome 7 ratiο greater than or equal to 2 for amplification. Time-to-treatment failure (TTF) to EGFR TKI in patients identified as MET-high and -low was estimated by Kaplan-Meier method and compared using log-rank test. Multiregion single-nucleotide polymorphism array analysis was performed on 13 early-stage resected EGFR-mutant–positive NSCLC across 59 sectors to investigate intratumoral heterogeneity of MET CNG. Results Fifty-two (26%) of 200 patients in the metastatic cohort were MET-high at diagnosis; 46 (23%) had polysomy and six (3%) had amplification. Median TTF was 12.2 months (95% CI, 5.7 to 22.6 months) versus 13.1 months (95% CI, 10.6 to 15.0 months) for MET-high and -low, respectively ( P = .566), with no significant difference in response rate regardless of copy number thresholds. Loss of MET was observed in three of six patients identified as MET-high who underwent postprogression biopsies, which is consistent with marked intratumoral heterogeneity in MET CNG observed in early-stage tumors. Suboptimal response (TTF, 1.0 to 6.4 months) to EGFR TKI was observed in patients with coexisting MET amplification (five [3.2%] of 154). Conclusion Although up to 26% of TKI-naïve EGFR-mutant–positive NSCLC harbor high MET CNG by fluorescence in situ hybridization, this did not significantly affect response to TKI, except in patients identified as MET-amplified. Our data underscore the limitations of adopting arbitrary copy number thresholds and the need for cross-assay validation to define therapeutically tractable MET pathway dysregulation in EGFR-mutant–positive NSCLC.
TRANSLATIONAL RELEVANCEUnderstanding resistance to targeted therapy requires in depth analysis at multiple levels (single gene, chromosome, transcriptome). Our results illustrate the interplay between genetic alterations, cell lineage plasticity and the tumor microenvironment in shaping divergent TKI resistance and outcome trajectories in EGFR mutated NSCLC. Transcriptomic analysis revealed ubiquitous loss of adenocarcinoma lineage gene expression in T790M negative tumors. TP53 alterations, 3q chromosomal amplifications, whole genome doubling and non-aging mutational signatures were also enriched in T790M negative tumors. Genomic and transcriptomic profiling may facilitate the design of bespoke therapeutic approaches tailored to a tumor's adaptive potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.