Patients with low-grade glioma (LGG) have been studied as a model of functional brain reorganization due to their slow-growing nature. However, there is no information regarding which brain areas are involved during verbal memory encoding after extensive left frontal LGG resection. In addition, it remains unknown whether these patients can improve their memory performance after instructions to apply efficient strategies. The neural correlates of verbal memory encoding were investigated in patients who had undergone extensive left frontal lobe (LFL) LGG resections and healthy controls using fMRI both before and after directed instructions were given for semantic organizational strategies. Participants were scanned during the encoding of word lists under three different conditions before and after a brief period of practice. The conditions included semantically unrelated (UR), related-non-structured (RNS), and related-structured words (RS), allowing for different levels of semantic organization. All participants improved on memory recall and semantic strategy application after the instructions for the RNS condition. Healthy subjects showed increased activation in the left inferior frontal gyrus (IFG) and middle frontal gyrus (MFG) during encoding for the RNS condition after the instructions. Patients with LFL excisions demonstrated increased activation in the right IFG for the RNS condition after instructions were given for the semantic strategies. Despite extensive damage in relevant areas that support verbal memory encoding and semantic strategy applications, patients that had undergone resections for LFL tumor could recruit the right-sided contralateral homologous areas after instructions were given and semantic strategies were practiced. These results provide insights into changes in brain activation areas typically implicated in verbal memory encoding and semantic processing.
BackgroundPersistent postconcussion syndrome (PCS) occurs in around 5–10% of individuals after mild traumatic brain injury (mTBI), but research into the underlying biology of these ongoing symptoms is limited and inconsistent. One reason for this could be the heterogeneity inherent to mTBI, with individualized injury mechanisms and psychological factors. A multimodal imaging study may be able to characterize the injury better.AimTo look at the relationship between functional (fMRI), structural (diffusion tensor imaging), and metabolic (magnetic resonance spectroscopy) data in the same participants in the long term (>1 year) after injury. It was hypothesized that only those mTBI participants with persistent PCS would show functional changes, and that these changes would be related to reduced structural integrity and altered metabolite concentrations.MethodsFunctional changes associated with persistent PCS after mTBI (>1 year postinjury) were investigated in participants with and without PCS (both n = 8) and non-head injured participants (n = 9) during performance of working memory and attention/processing speed tasks. Correlation analyses were performed to look at the relationship between the functional data and structural and metabolic alterations in the same participants.ResultsThere were no behavioral differences between the groups, but participants with greater PCS symptoms exhibited greater activation in attention-related areas (anterior cingulate), along with reduced activation in temporal, default mode network, and working memory areas (left prefrontal) as cognitive load was increased from the easiest to the most difficult task. Functional changes in these areas correlated with reduced structural integrity in corpus callosum and anterior white matter, and reduced creatine concentration in right dorsolateral prefrontal cortex.ConclusionThese data suggest that the top-down attentional regulation and deactivation of task-irrelevant areas may be compensating for the reduction in working memory capacity and variation in white matter transmission caused by the structural and metabolic changes after injury. This may in turn be contributing to secondary PCS symptoms such as fatigue and headache. Further research is required using multimodal data to investigate the mechanisms of injury after mTBI, but also to aid individualized diagnosis and prognosis.
Primary Objective: To investigate sustained structural changes in the long-term (>1 year) after mild traumatic brain injury (mTBI), and their relationship to ongoing post-concussion syndrome (PCS).Research Design: Morphological and structural connectivity magnetic resonance imaging (MRI) data were acquired from 16 participants with mTBI and 9 participants without previous head injury.Main Outcomes and Results: Participants with mTBI had less prefrontal grey matter and lower fractional anisotropy (FA) in the anterior corona radiata and internal capsule.Furthermore, PCS severity was associated with less parietal lobe grey matter and lower FA in the corpus callosum.Conclusions: There is evidence for both white and grey matter damage in participants with mTBI over a year after injury. Furthermore, these structural changes are greater in those with report more PCS symptoms, suggesting a neurophysiological basis for these persistent symptoms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.