SUMMARYStrigolactones (SLs), or their derivatives, were recently demonstrated to act as endogenous shoot branching inhibitors, but their biosynthesis and mechanism of action are poorly understood. Here we show that the branching phenotype of mutants in the Arabidopsis P450 family member, MAX1, can be fully rescued by strigolactone addition, suggesting that MAX1 acts in SL synthesis. We demonstrate that SLs modulate polar auxin transport to control branching and that both the synthetic SL GR24 and endogenous SL synthesis significantly reduce the basipetal transport of a second branch-regulating hormone, auxin. Importantly, GR24 inhibits branching only in the presence of auxin in the main stem, and enhances competition between two branches on a common stem. Together, these results support two current hypotheses: that auxin moving down the main stem inhibits branch activity by preventing the establishment of auxin transport out of axillary branches; and that SLs act by dampening auxin transport, thus enhancing competition between branches.
Steroid hormones are essential for development, and the precise control of their homeostasis is a prerequisite for normal growth. UDP-glycosyltransferases (UGTs) are considered to play an important regulatory role in the activity of steroids in mammals and insects. This study provides an indication that a UGT accepting plant steroids as substrates functions in brassinosteroid (BR) homeostasis. The UGT73C5 of Arabidopsis thaliana catalyses 23-Oglucosylation of the BRs brassinolide (BL) and castasterone. Transgenic plants overexpressing UGT73C5 displayed BR-deficient phenotypes and contained reduced amounts of BRs. The phenotype, which was already apparent in seedlings, could be rescued by application of BR. In feeding experiments with BL, wild-type seedlings converted BL to the 23-O-glucoside; in the transgenic lines silenced in UGT73C5 expression, no 23-O-glucoside was detected, implying that this UGT is the only enzyme that catalyzes BL-23-O-glucosylation in seedlings. Plant lines in which UGT73C5 expression was altered also displayed hypocotyl phenotypes previously described for seedlings in which BR inactivation by hydroxylation was changed. These data support the hypothesis that 23-O-glucosylation of BL is a function of UGT73C5 in planta, and that glucosylation regulates BR activity.glucosylation ͉ glycosyltransferase ͉ homeostasis ͉ plant ͉ steroid
SummaryThe phenylpropanoid pathway in plants leads to the synthesis of a wide range of soluble secondary metabolites, many of which accumulate as glycosides. In Arabidopsis, a small cluster of three closely related genes, UGT72E1-E3, encode glycosyltransferases shown to glucosylate several phenylpropanoids in vitro, including monolignols, hydroxycinnamic acids and hydroxycinnamic aldehydes. The role of these genes in planta has now been investigated through genetically downregulating the expression of individual genes or silencing the entire cluster. Analysis of these transgenic Arabidopsis plants showed that the levels of coniferyl and sinapyl alcohol 4-O-glucosides that accumulate in light-grown roots were significantly reduced. A 50% reduction in both glucosides was observed in plants in which UGT72E2 was downregulated, whereas silencing the three genes led to a 90% reduction, suggesting some redundancy of function within the cluster. The gene encoding UGT72E2 was constitutively overexpressed in transgenic Arabidopsis to determine whether increased glucosylation of monolignols could influence flux through the soluble phenylpropanoid pathway. Elevated expression of UGT72E2 led to increased accumulation of monolignol glucosides in root tissues and also the appearance of these glucosides in leaves. In particular, coniferyl alcohol 4-O-glucoside accumulated to massive amounts (10 lmol g )1 FW) in root tissues of these plants. Increased glucosylation of other phenylpropanoids also occurred in plants overexpressing this glycosyltransferase. Significantly changing the pattern of glycosides in the leaves also led to a pronounced change in accumulation of the hydroxycinnamic ester sinapoyl malate. The data demonstrate the plasticity of phenylpropanoid metabolism and the important role that glucosylation of secondary metabolites can play in cellular homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.