Cell penetrating and targeting peptides (CPPs and CTPs) encompass an important class of biochemically active peptides owning the capabilities of targeting and translocating within selected cell types. As such, they have been widely used in the delivery of imaging and therapeutic agents for the diagnosis and treatment of various diseases, especially in cancer. Despite their potential utility, first generation CTPs and CPPs based on the native peptide sequences are limited by poor biological and pharmacological properties, thereby restricting their efficacy. Therefore, medicinal chemistry approaches have been designed and developed to construct related peptidomimetics. Of specific interest herein, are the design applications which modify the polyamide backbone of lead CTPs and CPPs. These modifications aim to improve the biochemical characteristics of the native peptide sequence in order to enhance its diagnostic and therapeutic capabilities. This review will focus on a selected set of cell penetrating and targeting peptides and their related peptidomimetics whose polyamide backbone has been modified in order to improve their applications in cancer detection and treatment.
Oligoarginine sequences conjugated to a short cancer-targeting peptide (CTP) selective for the prostate-specific membrane antigen (PSMA) receptor was developed for selective small interfering RNA (siRNA) delivery to a human metastatic/castrationresistant prostate cancer (PCa) cell line, which expresses PSMA on the surface. The PSMA-R n (n = 6 and 9) peptides were synthesized by solid-phase peptide synthesis, characterized by liquid chromatography-mass spectrometry (LC-MS) and condensed with glucose-regulated protein (GRP)-silencing siRNAs. Native gels showed formation of stable CTP:siRNA ionic complexes. Furthermore, siRNA release was effected by heparin competition, supporting the peptides' capabilities to act as condensing and releasing agents. However, dynamic light scattering (DLS) and transmission electron microscopy (TEM) studies revealed large anionic complexes that were prone to aggregation and limited cell uptake for RNAi activity. Taken together, these data support the notion that the development of efficient peptide-based siRNA delivery systems is in part contingent on the formulation of discrete nanoparticles that can effectively condense and release siRNA in cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.