The peroxisomal protein acyl-CoA oxidase (Pox1p) of Saccharomyces cerevisiae lacks either of the two well characterized peroxisomal targeting sequences known as PTS1 and PTS2. Here we demonstrate that peroxisomal import of Pox1p is nevertheless dependent on binding to Pex5p, the PTS1 import receptor. The interaction between Pex5p and Pox1p, however, involves novel contact sites in both proteins. The interaction region in Pex5p is located in a defined area of the amino-terminal part of the protein outside of the tetratricopeptide repeat domain involved in PTS1 recognition; the interaction site in Pox1p is located internally and not at the carboxyl terminus where a PTS1 is normally found. By making use of pex5 mutants that are either specifically disturbed in binding of PTS1 proteins or in binding of Pox1p, we demonstrate the existence of two independent, Pex5p-mediated import pathways into peroxisomes in yeast as follows: a classical PTS1 pathway and a novel, non-PTS1 pathway for Pox1p.
A number of peroxisome-associated proteins have been described that are involved in the import of proteins into peroxisomes, among which is the receptor for peroxisomal targeting signal 1 (PTS1) proteins Pex5p, the integral membrane protein Pex13p, which contains an Src homology 3 (SH3) domain, and the peripheral membrane protein Pex14p. In the yeast Saccharomyces cerevisiae, both Pex5p and Pex14p are able to bind Pex13p via its SH3 domain. Pex14p contains the classical SH3 binding motif PXXP, whereas this sequence is absent in Pex5p. Mutation of the conserved tryptophan in the PXXP binding pocket of Pex13-SH3 abolished interaction with Pex14p, but did not affect interaction with Pex5p, suggesting that Pex14p is the classical SH3 domain ligand and that Pex5p binds the SH3 domain in an alternative way. To identify the SH3 binding site in Pex5p, we screened a randomly mutagenized PEX5 library for loss of interaction with Pex13-SH3. Such mutations were all located in a small region in the N-terminal half of Pex5p. One of the altered residues (F208) was part of the sequence W204XXQF208, that is conserved between Pex5 proteins of different species. Site-directed mutagenesis of Trp204 confirmed the essential role of this motif in recognition of the SH3 domain. The Pex5p mutants could only partially restore PTS1-protein import in pex5Δ cells in vivo. In vitro binding studies showed that these Pex5p mutants failed to interact with Pex13-SH3 in the absence of Pex14p, but regained their ability to bind in the presence of Pex14p, suggesting the formation of a heterotrimeric complex consisting of Pex5p, Pex14p, and Pex13-SH3. In vivo, these Pex5p mutants, like wild-type Pex5p, were still found to be associated with peroxisomes. Taken together, this indicates that in the absence of Pex13-SH3 interaction, other protein(s) is able to bind Pex5p at the peroxisome; Pex14p is a likely candidate for this function.
Several Rab GTPases have been localized to distinct compartments of the endocytic pathway. Rab4 is associated with early endosomes and recycling vesicles and regulates membrane recycling from early endosomes. Rab7 is localized to late endosomes and is involved in the regulation of membrane transport between late endosomes and lysosomes. Although Rab4 and Rab7 appear to regulate distinct transport events in endocytosis, it is not clear whether they perform their activities in related or entirely distinct intracellular compartments. To address this question, we generated stable cell lines expressing Rab4 tagged with a novel X31 influenza hemagglutinin (NH) epitope tag. These antibodies are characterized in this paper and were used to immunoisolate endocytic vesicles with cytoplasmically exposed NHRab4. Immunoisolated membranes contain internalized 125I-transferrin, but are devoid of Rab7. Confocal immunofluorescence microscopy showed that the early endosomal GTPases Rab4 and Rab5 both do not codistribute with Rab7 within the same cell. These observations suggest that each of the three Rab GTPases operationally defines a distinct station of the endocytic pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.