The prospect of modifying the surface properties of the substrate (or base) material to enhance its corrosion and wear resistance as well as its reliability, performance, and more importantly its bioactivity is made possible using nanocoatings. An effective technique of synthesizing high purity nanocoatings in addition to nanopowders and fibers is to utilize the sol‐gel approach. It is an attractive and versatile method that can be carried out with relative ease. Ceramic coatings, such as hydroxyapatite (HAp), can be fabricated through chemical means from solutions and consequently complex shapes can be coated economically. Given the fact that mixing takes place on the atomic scale, one of the key advantages of the sol‐gel technique is its capacity to produce homogeneous materials, and it has been shown that the mechanical properties of sol‐gel coatings are enhanced due to the presence of nanocrystalline grain structures. This review covers a brief insight into the recent application of HAp nanocoatings derived from sol‐gel technique.
Calcium phosphate materials can be produced using a number of wet methods that are based on hydrothermal or co-precipitation methods that might use acidic or basic chemical environments. In our previously published works, we have investigated calcium phosphates such as monetite, hydroxyapatite, and whitlockite which were successfully produced by mechano-chemical methods and/or hydrothermal treatments from a range of marine shells and corals which were obtained from the Great Barrier Reef. The aim of the current work was to analyze and compare the mechanisms of conversion of one hard coral species and one calcified algae species from the Great Barrier Reef.
The biodegradable and biocompatible antibiotic containing thin film composites are very appropriate biomaterials as coating materials for dental implants because of their adjustable drug loading and release rates for the prevention of implant related infections. Coralline hydroxyapatite (HAp) was loaded with gentamicin antibiotics and combined with a biodegradable polylactic acid (PLA) to form thin film composites. PLA-HAp, PLA-Gentamicin (GM) and PLA-HAp-GM composites were produced, and their dissolution studies were carried out in phosphate buffered saline under SINK conditions. It was observed that the coatings could be efficiently applied to titanium dental implants and the drug release rates can be efficiently controlled.
Calcium phosphate (CaP) compounds may occur in the body as abnormal pathogenic phases in addition to their normal occurrence as bones and teeth. Dicalcium phosphate dihydrate (DCPD; CaPO4·2H2O), along with other significant CaP phases, have been observed in pathogenic calcifications such as dental calculi, kidney stones and urinary stones. While other studies have shown that polar amino acids can inhibit the growth of CaPs, these studies have mainly focused on hydroxyapatite (HAp; Ca10(PO4)6(OH)2) formation from highly supersaturated solutions, while their effects on DCPD nucleation and growth from metastable solutions have been less thoroughly explored. By further elucidating the mechanisms of DCPD formation and the influence of amino acids on those mechanisms, insights may be gained into ways that amino acids could be used in treatment and prevention of unwanted calcifications. The current study involved seeded growth of DCPD from metastable solutions at constant pH in the presence of neutral, acidic and phosphorylated amino acid side chains. As a comparison, solutions were also seeded with calcium pyrophosphate (CPP; Ca2P2O7), a known calcium phosphate inhibitor. The results show that polar amino acids inhibit DCPD growth; this likely occurs due to electrostatic interactions between amino acid side groups and charged DCPD surfaces. Phosphoserine had the greatest inhibitory ability of the amino acids tested, with an effect equal to that of CPP. Clustering of DCPD crystals giving rise to a “chrysanthemum-like” morphology was noted with glutamic acid. This study concludes that molecules containing an increased number of polar side groups will enhance the inhibition of DCPD seeded growth from metastable solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.