Extended spaceflight has been shown to adversely affect astronaut visual acuity. The purpose of this study was to determine whether spaceflight alters gene expression profiles and induces oxidative damage in the retina. Ten week old adult C57BL/6 male mice were flown aboard the ISS for 35 days and returned to Earth alive. Ground control mice were maintained on Earth under identical environmental conditions. Within 38 (+/−4) hours after splashdown, mice ocular tissues were collected for analysis. RNA sequencing detected 600 differentially expressed genes (DEGs) in murine spaceflight retinas, which were enriched for genes related to visual perception, the phototransduction pathway, and numerous retina and photoreceptor phenotype categories. Twelve DEGs were associated with retinitis pigmentosa, characterized by dystrophy of the photoreceptor layer rods and cones. Differentially expressed transcription factors indicated changes in chromatin structure, offering clues to the observed phenotypic changes. Immunofluorescence assays showed degradation of cone photoreceptors and increased retinal oxidative stress. Total retinal, retinal pigment epithelium, and choroid layer thickness were significantly lower after spaceflight. These results indicate that retinal performance may decrease over extended periods of spaceflight and cause visual impairment.
Dental roots in the maxillary sinus are almost twice as likely to be associated with diseased sinuses than normal sinuses. Healthy teeth whose roots are inside the maxillary sinus may induce an inflammatory response in the sinus membrane. It is suspected that dental procedures may exacerbate the condition.
The hyoid bone position showed more correlations with oropharynx and hypopharynx airway measurements. The hyoid triangle method was not applicable to 3D images, since it showed a smaller number of measures correlated to the hyoid bone position.
This study evaluated the action of ionizing radiation and the possible radioprotective effect of the non-steroidal anti-inflammatory drug meloxicam on the bone physiology of rat mandibles by assessing the alveolar socket healing and bone strength. Forty male Wistar rats were divided in 4 groups (n=10): control (CG), irradiated (IG), meloxicam (MG), meloxicam irradiated (MIG). A dose of 0.2 mg/kg meloxicam was administered to MG and MIG. After this, IG and MIG were irradiated with 15 Gy radiation dose in the mandible. Forty days after the above procedures, the mandibular first molars were extracted and the animals were killed after 15 or 30 days (n=5). Micro-computed tomography and bending test were used to evaluate alveolar socket healing and bone strength, respectively. At 15 days, bone volume, bone volume fraction and trabecular thickness were higher in the CG and MG than in the IG and MIG; and trabecular separation was higher in the IG compared with the others. At 30 days, there was a difference only in trabecular separation, which was higher in IG than in CG and MG, and MIG did not differ from the others. Bone strength was lower in IG compared with CG and MG, and MIG did not differ from the others. In conclusion, the ionizing radiation affected the bone physiology of rat mandibles, delaying the alveolar socket healing and reducing the bone strength. Moreover, the meloxicam had a positive effect on the trabecular separation in alveolar socket healing and on the bone strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.