Background Patients with pre-existing heart failure (HF) are likely at higher risk for adverse outcomes in coronavirus disease-2019 (COVID-19), but data on this population are sparse. Objectives This study described the clinical profile and associated outcomes among patients with HF hospitalized with COVID-19. Methods This study conducted a retrospective analysis of 6,439 patients admitted for COVID-19 at 1 of 5 Mount Sinai Health System hospitals in New York City between February 27 and June 26, 2020. Clinical characteristics and outcomes (length of stay, need for intensive care unit, mechanical ventilation, and in-hospital mortality) were captured from electronic health records. For patients identified as having a history of HF by International Classification of Diseases-9th and/or 10th Revisions codes, manual chart abstraction informed etiology, functional class, and left ventricular ejection fraction (LVEF). Results Mean age was 63.5 years, and 45% were women. Compared with patients without HF, those with previous HF experienced longer length of stay (8 days vs. 6 days; p < 0.001), increased risk of mechanical ventilation (22.8% vs. 11.9%; adjusted odds ratio: 3.64; 95% confidence interval: 2.56 to 5.16; p < 0.001), and mortality (40.0% vs. 24.9%; adjusted odds ratio: 1.88; 95% confidence interval: 1.27 to 2.78; p = 0.002). Outcomes among patients with HF were similar, regardless of LVEF or renin-angiotensin-aldosterone inhibitor use. Conclusions History of HF was associated with higher risk of mechanical ventilation and mortality among patients hospitalized for COVID-19, regardless of LVEF.
BackgroundCine cardiovascular magnetic resonance (CMR) is challenging in patients who cannot perform repeated breath holds. Real-time, free-breathing acquisition is an alternative, but image quality is typically inferior. There is a clinical need for techniques that achieve similar image quality to the segmented cine using a free breathing acquisition. Previously, high quality retrospectively gated cine images have been reconstructed from real-time acquisitions using parallel imaging and motion correction. These methods had limited clinical applicability due to lengthy acquisitions and volumetric measurements obtained with such methods have not previously been evaluated systematically.MethodsThis study introduces a new retrospective reconstruction scheme for real-time cine imaging which aims to shorten the required acquisition. A real-time acquisition of 16-20s per acquired slice was inputted into a retrospective cine reconstruction algorithm, which employed non-rigid registration to remove respiratory motion and SPIRiT non-linear reconstruction with temporal regularization to fill in missing data. The algorithm was used to reconstruct cine loops with high spatial (1.3-1.8 × 1.8-2.1 mm2) and temporal resolution (retrospectively gated, 30 cardiac phases, temporal resolution 34.3 ± 9.1 ms). Validation was performed in 15 healthy volunteers using two different acquisition resolutions (256 × 144/192 × 128 matrix sizes). For each subject, 9 to 12 short axis and 3 long axis slices were imaged with both segmented and real-time acquisitions. The retrospectively reconstructed real-time cine images were compared to a traditional segmented breath-held acquisition in terms of image quality scores. Image quality scoring was performed by two experts using a scale between 1 and 5 (poor to good). For every subject, LAX and three SAX slices were selected and reviewed in the random order. The reviewers were blinded to the reconstruction approach and acquisition protocols and scores were given to segmented and retrospective cine series. Volumetric measurements of cardiac function were also compared by manually tracing the myocardium for segmented and retrospective cines.ResultsMean image quality scores were similar for short axis and long axis views for both tested resolutions. Short axis scores were 4.52/4.31 (high/low matrix sizes) for breath-hold vs. 4.54/4.56 for real-time (paired t-test, P = 0.756/0.011). Long axis scores were 4.09/4.37 vs. 3.99/4.29 (P = 0.475/0.463). Mean ejection fraction was 60.8/61.4 for breath-held acquisitions vs. 60.3/60.3 for real-time acquisitions (P = 0.439/0.093). No significant differences were seen in end-diastolic volume (P = 0.460/0.268) but there was a trend towards a small overestimation of end-systolic volume of 2.0/2.5 ml, which did not reach statistical significance (P = 0.052/0.083).ConclusionsReal-time free breathing CMR can be used to obtain high quality retrospectively gated cine images in 16-20s per slice. Volumetric measurements and image quality scores were similar in images from br...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.