The term “immune privilege” was originally coined to describe the suppression of inflammatory responses within organs protected by anatomic barriers, ie, the eyes, brain, placenta, and testes. However, cellular and metabolic processes, which orchestrate immune responses, also control inflammation within these sites. Our current understanding of tolerogenic mechanisms has extended the definition of immune privilege to include hair follicles, the colon, and cancer. By catabolizing tryptophan, cells expressing the enzyme indoleamine-2,3-dioxygenase produce kynurenine metabolites, which orchestrate local and systemic responses to control inflammation, thus maintaining immune privilege. This review highlights the double-edged role played by the kynurenine pathway (KP), which establishes and maintains immune-privileged sites while contributing to cancer immune escape. The identification of the underlying molecular drivers of the KP in immune-privileged sites and in cancer is essential for the development of novel therapies to treat autoimmunity and cancer and to improve transplantation outcomes.
ObjectiveEndothelial-colony forming cells (ECFCs) can be readily expanded from human umbilical cord blood and can facilitate repair of endothelial injury. E-selectin and SDF-1α are produced following endothelial injury and can regulate endothelial progenitor homing. Mechanisms of vascular repair specific to the mode of injury have not been well described in homogenous cell populations such as ECFCs and are needed for development of more effective vascular repair strategies.Methods and ResultsLipopolysaccharide (LPS)-induced endotoxic injury to mature human umbilical vein endothelial cells (HUVEC) was compared with hypoxic and radiation injury. E-selectin expression in HUVEC cells is markedly increased (208-fold) following LPS-induced injury and facilitates increased ECFC adhesion and migration function in vitro. SDF-1α expression remains unchanged in LPS-treated HUVEC cells but increases more than 2 fold in fibroblasts undergoing similar endotoxic injury. SDF-1α induces expression of E-selectin ligands on ECFCs and facilitates greater E-selectin-mediated adhesion and migration of ECFCs in a CXCR4-dependent manner. Induction of E-selectin expression in HUVECs following hypoxic or radiation injury is negligible, however, while SDF-1α is increased markedly following hypoxia, highlighting injury-specific synergism between mediators of vascular repair.ConclusionE-selectin mediates adhesion and migration of ECFCs following endotoxic endothelial injury. SDF-1α augments E-selectin mediated ECFC adhesion and migration in a CXCR4-dependent manner.
IntroductionThe development of an effective therapeutic HIV vaccine that induces immunologic control of viral replication, thereby eliminating or reducing the need for antiretroviral therapy (ART), would be of great value. Besides the obvious challenges of developing a therapeutic vaccine that would generate effective, sustained anti-HIV immunity in infected individuals is the issue of how to best assess the efficacy of vaccine candidates.DiscussionThis review discusses the various outcome measures assessed in therapeutic HIV vaccine clinical trials involving individuals receiving suppressive ART, with a particular focus on the role of analytical treatment interruption (ATI) as a way to assess the virologic control induced by an immunotherapy. This strategy is critical given that there are otherwise no readily available measures to determine the ability of a vaccine-induced immune response to effectively control HIV replication. The various outcome measures that have been used to assess vaccine efficacy in published therapeutic HIV vaccine clinical trials will also be discussed. Outcome measures have included the kinetics of viral rebound, the new viral set point and changes in the size of the viral reservoir. Clinically relevant outcomes such as the CD4 decline, the time to resume therapy or the time to meet the criterion to resume therapy, the proportion of participants who resume therapy and/or the development of clinical symptoms such as acute retroviral syndrome are also measures of vaccine efficacy.ConclusionsGiven the lack of consistency between therapeutic HIV vaccine trials in how efficacy is assessed, comparing vaccines has been difficult. It would, therefore, be beneficial to determine the most clinically relevant measure for use in future studies. Other recommendations for future clinical trials also include studying compartments in addition to blood and replacing ATIs with single-copy assays in situations in which the use of an ATI is not ideal.
BackgroundApproximately 30% of HIV-1-infected patients receiving antiretroviral therapy who achieve virologic control have unsatisfactory immune reconstitution, with CD4+ T-cell counts persistently below 350 cells/μL. These patients are at elevated risk for clinical progression to AIDS and non-AIDS events. CD4+ T-cell depletion following infection and persistent immune activation can partially explain this low CD4+ T-cell recovery. Recent data suggest a link between the tryptophan oxidation pathway, immune activation and HIV disease progression based on overstimulation of the tryptophan oxidation pathway by HIV antigens and by interferon-gamma. This overstimulation reduces levels of circulating tryptophan, resulting in inflammation which has been implicated in the development of neurocognitive dysfunction. Niacin (vitamin B3) is able to control the excess tryptophan oxidation, correcting tryptophan depletion, and therefore represents an interesting strategy to improve CD4 recovery.We aim to design a crossover proof-of-concept study to assess supplementation with an extended-release form of niacin (Niaspan FCT™) in combination with antiretroviral therapy, compared to antiretroviral therapy alone, on T-cell immune activation as defined by changes in the percentage of CD8+ CD38+ HLA-DR+ T-cells.Methods/DesignThis randomized, open-label, interventional crossover study with an immediate versus deferred use of Niaspan FCT for 24 weeks will assess its ability to reduce immune activation and thus increase CD4 recovery in 20 HIV-infected individuals with suboptimal immune responses despite sustained virologic suppression. A substudy evaluating neurocognitive function will also be conducted.DiscussionThis randomized trial will provide an opportunity to evaluate the potential benefit of oral extended-release niacin, a drug that can indirectly increase tryptophan, to reduce immune activation and in turn increase CD4+ T-cell recovery. The study will also allow for the evaluation of the impact of Niaspan FCT on neurocognitive function in HIV-infected individuals with suboptimal immune responses despite sustained virologic suppression.Trial registrationThis study was registered with ClinicalTrials.gov on 17 December 2013 (registration number: NCT02018965).Electronic supplementary materialThe online version of this article (doi:10.1186/1745-6215-15-390) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.