Bacterial abortive infection systems limit the spread of foreign invaders by shutting down or killing infected cells before the invaders can replicate. Several RNA-targeting CRISPR-Cas systems (e.g., types III and VI) cause Abi phenotypes by activating indiscriminate RNases. However, a CRISPR-mediated abortive mechanism that relies on indiscriminate DNase activity has yet to be observed. Here we report that RNA targeting by the type V Cas12a2 nuclease drives abortive infection through non-specific cleavage of double-stranded (ds)DNA. Upon recognition of an RNA target with an activating protospacer-flanking sequence, Cas12a2 efficiently degrades single–stranded (ss)RNA, ssDNA, and dsDNA. Within cells, the dsDNase activity induces an SOS response and impairs growth, stemming the infection. Finally, we harnessed the collateral activity of Cas12a2 for direct RNA detection, demonstrating that Cas12a2 can be repurposed as an RNA-guided, RNA-targeting tool. These findings expand the known defensive capabilities of CRISPR-Cas systems and create additional opportunities for CRISPR technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.