The era of antibiotic resistance is a cause of increasing concern as bacteria continue to develop adaptive countermeasures against current antibiotics at an alarming rate. In recent years, studies have reported nanoparticles as a promising alternative to antibacterial reagents because of their exhibited antibacterial activity in several biomedical applications, including drug and gene delivery, tissue engineering, and imaging. Moreover, nanomaterial research has led to reports of a possible relationship between the morphological characteristics of a nanomaterial and the magnitude of its delivered toxicity. However, conventional synthesis of nanoparticles requires harsh chemicals and costly energy consumption. Additionally, the exact relationship between toxicity and morphology of nanomaterials has not been well established. Here, we review the recent advancements in synthesis techniques for silver, gold, copper, titanium, zinc oxide, and magnesium oxide nanomaterials and composites, with a focus on the toxicity exhibited by nanomaterials of multidimensions. This article highlights the benefits of selecting each material or metal-based composite for certain applications while also addressing possible setbacks and the toxic effects of the nanomaterials on the environment.
Microplastics and nanoplastics are emerging pollutants, widespread both in marine and in freshwater environments. Cyanobacteria are also ubiquitous in water and play a vital role in natural ecosystems, using photosynthesis to produce oxygen. Using photography, fluorescence microscopy and cryogenic and scanning electron microscopy (cryo-SEM, SEM) we investigated the physicochemical response of one of the most predominant seawater cyanobacteria (Synechococcus elongatus, PCC 7002) and freshwater cyanobacteria (S. elongatus Nageli PCC 7942) when exposed to 10 μm diameter polystyrene (microPS) and 100 nm diameter polystyrene (nanoPS) particles. Marine and freshwater cyanobacteria formed aggregates with the nanoPS, bound together by extracellular polymeric substances (EPS), and these aggregates sedimented. The aggregates were larger, and the sedimentation was more rapid for the marine system. Aggregate morphologies were qualitatively different for the microPS samples, with the bacteria linking up a small number of particles, all held together by EPS. There was no sedimentation in these samples. The cyanobacteria remained alive after exposure to the particles. The particle size-and salt concentration-dependent response of cyanobacteria to these anthropogenic stressors is an important factor to consider for a proper understanding of the fate of the particles as well as the bacteria.
Microplastics or plastic particles less than 5 mm in size are a ubiquitous and damaging pollutant in the marine environment. However, the interactions between these plastic particles and marine microorganisms are just starting to be understood. The objective of this study was to measure the responses of a characteristic marine organism (Synechococcus sp. PCC 7002) to an anthropogenic stressor (polyethelene nanoparticles and microparticles) using molecular techniques. This investigation showed that polyethylene microparticles and nanoparticles have genetic, enzymatic and morphological effects on Synechococcus sp. PCC 7002. An RT-PCR analysis showed increases in the expression of esterase and hydrolase genes at 5 days of exposure to polyethylene nanoparticles and at 10 days of exposure to polyethylene microparticles. A qualitative enzymatic assay also showed esterase activity in nanoparticle exposed samples. Cryo-scanning electron microscopy was used to assess morphological changes in exopolymer formation resulting from exposure to polyethylene microparticles and nanoparticles. The data from this paper suggests that microplastic and nanoplastics could be key microbial stressors and should be investigated in further detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.