In this paper, a planar, compact pentagonal shaped ultrawideband antenna of microstrip line fed offering triple band-notched characteristics response is proposed and investigated. Triple band-notch response can be achieved by creating two inverted U-shaped slots of different size in pentagonal patch, and also electromagnetic band gap structure of hexagonal shape is created near the feed line of UWB antenna. To implement the proposed antenna, RT/DUROID 5880 substrate of 1.6 mm thickness is used. The designed antenna was successfully simulated, developed, and manufactured. The dimension of the suggested antenna is
36
mm
×
33
mm
×
1.6
mm
and has a bandwidth of 3.1–10.6 GHz with a magnitude of
S
11
<
−
10
dB
, the maximum pass band gain of 4.6 dB and with the exception of the 4.0–4.4 GHz (C-band satellite communication), 5.2–5.8 GHz (WLAN), and 8.0–8.25 GHz (X-band) frequency bands. The suggested antenna has a good return loss, a virtually omnidirectional radiation pattern, and a constant gain throughout operation.
The development of a network termed microgrid (MG) has been motivated owing to augmentation in renewable energy source (RES) infiltration along with the utilization of enhanced power electronic technologies. Recently, more popularity has been gained by the hybrid MG (HMG). Maintaining the power system’s (PS) small-signal stability (SSS) is highly complicated during the energy enhancement of RES. The enhancement of the SSS has been focused on by numerous existing methodologies; however, the optimal solution was not obtained by those methodologies. A new controller with the assistance of bell-curved squirrel search optimization (BCSSO) is proposed to address the aforementioned issue. Initially, for PSs such as photovoltaic (PV), wind turbines, along with fuel cells, a mathematical model is ascertained. Then, in this, the converter design has been developed. The PV’s maximum power flow is recognized by maximum power point tracking (MPPT) in the bidirectional switched buck-boost converter (BSBBC), which is utilized in this research, and by utilizing the fuzzy ruled linear quadratic Gaussian (FRLQG), the converters are controlled to assure safe operation along with soft dynamics. By employing the BCSSO, the parameters are modified in this controller which in turn ameliorates the SSS. The experiential evaluation of the proposed system’s performance is analogized with the existing methodologies. Consequently, the outcomes confirmed that a better performance was attained by the proposed methodology than the prevailing works.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.