The Drosophila Cut and mammalian Cut-like proteins contain, in addition to the homeodomain, three other DNA-binding regions called Cut repeats. Cut-like proteins, therefore, belong to a distinct class of homeodomain proteins with multiple DNA-binding domains. In this study, we assessed the DNA-binding specificity of the human Cut repeats by performing PCR-mediated random oligonucleotide selection with glutathione S-transferase fusion proteins. Cut repeat 1, Cut repeat 3, and Cut repeat 3 plus the homeodomain selected related yet distinct sequences. Therefore, sequences selected by one of the fusion proteins were often, but not always, recognized by the other proteins. Consensus binding sites were derived for each fusion protein. In each case, however, some selected sequences diverged from the consensus but were confirmed to be high-affinity recognition sites by electrophoretic mobility shift assay. We conclude that Cut DNA-binding domains have broad, overlapping DNA-binding specificities. Determination of dissociation constants indicated that in addition to the core consensus, flanking sequences have a moderate but significant effect on sequence recognition. Evidence from electrophoretic mobility shift assay, DNase footprinting, and dissociation constant analyses strongly suggested that glutathione S-transferase/Cut fusion proteins bind to DNA as dimers. The implications of these findings are discussed in relation to the DNA-binding capabilities of Cut repeats. In contrast to other studies, we found that the human Cut-like protein does not preferably bind to a site that includes an ATTA homeodomain-binding motif. Here we demonstrate that the native human Cut-like protein recognizes more efficiently a site containing an ATCGAT core consensus flanked with G/C-rich sequences.
The CCAAT displacement protein, the homolog of the Drosophila melanogaster CUT protein, contains four DNA-binding domains: three CUT repeats (CR1, CR2, and CR3) and the CUT homeodomain (HD). Using a panel of fusion proteins, we found that a CUT repeat cannot bind to DNA as a monomer, but that certain combinations of domains exhibit high DNA-binding affinity: CR1؉2, CR3HD, CR1HD, and CR2HD. One combination (CR1؉2) exhibited strikingly different DNA-binding kinetics and specificities. CR1؉2 displayed rapid on and off rates and bound preferably to two C(A/G)AT sites, organized as direct or inverted repeats. Accordingly, only CR1؉2 was able to bind to the CCAAT sequence, and its affinity was increased by the presence of a C(A/G)AT site at close proximity. A purified CCAAT displacement protein/CUT protein exhibited DNA-binding properties similar to those of CR1؉2; and in nuclear extracts, the CCAAT displacement activity also required the simultaneous presence of a C(A/G)AT site. Moreover, CR1؉2, but not CR3HD, was able to displace nuclear factor Y. Thus, the CCAAT displacement activity requires the presence of an additional sequence (CAAT or CGAT) and involves CR1 and CR2, but not the CUT homeodomain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.