We characterized two Arabidopsis thaliana cDNAs coding for class I valyl-tRNA synthetase and class II threonyl-tRNA synthetase. The proteins display characteristics of cytosolic enzymes, yet possess an N-terminal extension relative to their prokaryotic homologs. The proximal part of the N-terminal extension is a mitochondrial-targeting signal. Through transient expression of GFP fusions in tobacco cells, we demonstrated that both genes encode the cytosolic and mitochondrial forms of the enzymes by alternative use of two in-frame initiation codons. A long, mitochondrial form of the enzyme is translated from a first initiation codon at reduced levels because of a poor sequence context and a shorter, cytosolic form is translated from a second in-phase AUG, which is in a better context for translation initiation. Primer extension experiments revealed several transcript ends mapping upstream of the first AUG and between the two AUGs. Distal to the mitochondrial transit peptide both valyl-tRNA synthetase and threonyl tRNA synthetase possess an NH 2 -appended domain compared with their prokaryotic counterparts. This domain's amphiphilic helix is conserved between yeast and A. thaliana valyl-tRNA synthetase, suggesting an important role in translation. Based on the high structural similarities between yeast and A. thaliana valyl-tRNA synthetase, we propose that the acquisition of bifunctionality of valyl-tRNA synthetase predates the divergence of these two organisms.
Soybeans (Glycine max [L.] Merr.) respond to pathogens by producing isoflavonoid-derived phytoalexins. Chalcone synthase (CHS) is the first enzyme of the flavonoid/isoflavonoid biosynthetic pathway. We investigated changes in the steady state levels of CHS mRNA and other specific mRNAs at increasing times after inoculation in two different race-specific interactions, one between leaves and the bacterium Pseudomonas syringae pv glycinea (Psg), and one between roots and the fungus, Phytophthora megasperma f. sp. glycinea (Pmg). The amount of CHS mRNA increases significantly in soybean leaves inoculated with an avirulent race of Psg but not with a virulent race or water. In contrast, the increase in CHS mRNA is similar in roots inoculated with zoospores of either an avirulent or virulent race of Pmg. CHS mRNA increases significantly in pathogen inoculated roots but not in uninoculated controls. Hydroxyproline-rich glycoprotein (HRGP) has been observed by others to increase in wounded or pathogen-inoculated plants. We report here that HRGP mRNA levels are greater in roots inoculated with an avirulent Pmg race than with a virulent race, but inoculation with either race causes a significant increase in HRGP mRNA with respect to controls. Calmodulin or ubiquitin mRNA do not increase in either uninoculated or inoculated roots and leaves. The possibility that racespecific resistance in soybeans is expressed differently in different organs of the plant is discussed.Soybeans (Glycine max [L.] Merr.) respond actively to pathogen stress by producing phytoalexins and other stress metabolites (13). Stress metabolite production is correlated with resistance but is also observed in susceptible plants. In race-specific resistance, a cultivar is resistant to a particular race of the pathogen but susceptible to another. In a gene-forgene interaction, race-specific resistance is usually inherited as a single gene dominant trait in the host, and closely related avirulent and virulent races can be used to incite resistance
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.