BackgroundThe exact role of primary nanoparticle (NP) size and their degree of agglomeration in aerosols on the determination of pulmonary effects is still poorly understood. Smaller NP are thought to have greater biological reactivity, but their level of agglomeration in an aerosol may also have an impact on pulmonary response. The aim of this study was to investigate the role of primary NP size and the agglomeration state in aerosols, using well-characterized TiO2 NP, on their relative pulmonary toxicity, through inflammatory, cytotoxic and oxidative stress effects in Fisher 344 male rats.MethodsThree different sizes of TiO2 NP, i.e., 5, 10–30 or 50 nm, were inhaled as small (SA) (< 100 nm) or large agglomerates (LA) (> 100 nm) at 20 mg/m3 for 6 hours.ResultsCompared to the controls, bronchoalveolar lavage fluids (BALF) showed that LA aerosols induced an acute inflammatory response, characterized by a significant increase in the number of neutrophils, while SA aerosols produced significant oxidative stress damages and cytotoxicity. Data also demonstrate that for an agglomeration state smaller than 100 nm, the 5 nm particles caused a significant increase in cytotoxic effects compared to controls (assessed by an increase in LDH activity), while oxidative damage measured by 8-isoprostane concentration was less when compared to 10–30 and 50 nm particles. In both SA and LA aerosols, the 10–30 nm TiO2 NP size induced the most pronounced pro-inflammatory effects compared to controls.ConclusionsOverall, this study showed that initial NP size and agglomeration state are key determinants of nano-TiO2 lung inflammatory reaction, cytotoxic and oxidative stress induced effects.
Reference values for the biological monitoring of occupational exposures are generally normalized on the basis of creatinine (CR) concentration or specific gravity (SG) to account for fluctuations in urine dilution. For instance, the American Conference of Governmental Industrial Hygienists (ACGIH(®)) uses a reference value of 1g/L for CR. The comparison of urinary concentrations of biomarkers between studies requires the adjustment of results based on a reference CR and/or SG value, although studies have suggested that age, sex, muscle mass, and time of the day can exert non-negligible influences on CR excretion, while SG appears to be less affected. The objective of this study was to propose reference values for urinary CR and SG based on the results of samples sent for analysis by occupational health practitioners to the laboratory of the Occupational Health and Safety Research Institute of Québec (IRSST). We analyzed a database containing 20,395 urinary sample results collected between 1985 and 2010. Linear mixed-effects models with worker as a random effect were used to estimate the influence of sex and collection period on urinary CR and SG. Median CR concentrations were 25-30% higher in men (1.6 g/L or 14.4 mmol/L) than in women (1.2 g/L or 10.2 mmol/L). Four percent of the samples for men and 12% for women were below the acceptable threshold for CR (4.4 mmol/L). For SG, 5% of samples for men and 12% for women were below the threshold of 1.010. The difference in SG levels between sexes was lower than for CR, with a median of 1.024 for men compared to 1.020 for women. Our results suggest that the normalization of reference values based on a standard CR value of 1 g/L as proposed by the ACGIH is a conservative approach. According to the literature, CR excretion is more influenced by physiological parameters than SG. We therefore suggest that correction based on SG should be favored in future studies involving the proposal of reference values for the biological monitoring of occupational exposures.
dysfunction among styreneexposed workers. Scand J Work Environ Health 1995;21:382-90. Objectives The present study was undertaken to examine the relation between visual functions and occupational exposure to styrene. Methods A total of 128 workers (85% of the total population), from three glass-reinforced plastics plants in Canada, agreed to participate in the study. Environmental and biological measures were made on the day(s) prior to the assessment of near visual acuity (National Optical Visual Chart), chromatic discrimination (Lanthony D-15 desaturated panel), and near contrast sensitivity (Vistech 6000). The analyses were performed on 81 workers with near visual acuity of at least 1 min of arc at 0.5 m. Results The subjects were relatively young [29 (SD 8) years], with little seniority [5 (SD 4) years]. Styrene exposure for 8 h ranged from 6 to 937 (first quartile 21 mg . m-' , third quartile 303 mg . m-'), depending on the job site. The end-shift concentrations of urinary mandelic acid ranged from nondetectable to 1.90 mmol . mmol creatinine-l. Significant positive relations were found between the internal and external styrene exposure measurements and color vision loss adjusted for age, alcohol consumption, and seniority in a multiple regression analysis. The multiple regression analysis also showed that the end-shift concentration of urinary mandelic acid was inversely related to contrast sensitivity at 6 and 12 cycles . degree-'. Logistic multiple regression models indicated that the end-shift concentration of urinary mandelic acid was related to the prevalences of blurred vision, tearing, and eye irritation. C O~C~U S~O~S These findings suggest that there is a positive relation between styrene exposure and early color and contrast vision dysfunction.
There is accumulating epidemiological evidence that exposure to some solvents, metals, asphyxiants and other substances in humans is associated with an increased risk of acquiring hearing loss. Furthermore, simultaneous and successive exposure to certain chemicals along with noise can increase the susceptibility to noise-induced hearing loss. There are no regulations that require hearing monitoring of workers who are employed at locations in which occupational exposure to potentially ototoxic chemicals occurs in the absence of noise exposure. This project was undertaken to develop a toxicological database allowing the identification of possible ototoxic substances present in the work environment alone or in combination with noise exposure. Critical toxicological data were compiled for chemical substances included in the Quebec occupational health regulation. The data were evaluated only for noise exposure levels that can be encountered in the workplace and for realistic exposure concentrations up to the short-term exposure limit or ceiling value (CV) or 5 times the 8-h time-weighted average occupational exposure limit (TWA OEL) for human data and up to 100 times the 8-h TWA OEL or CV for animal studies. In total, 224 studies (in 150 articles of which 44 evaluated the combined exposure to noise and a chemical) covering 29 substances were evaluated using a weight of evidence approach. For the majority of cases where potential ototoxicity was previously proposed, there is a paucity of toxicological data in the primary literature. Human and animal studies indicate that lead, styrene, toluene and trichloroethylene are ototoxic and ethyl benzene, n-hexane and p-xylene are possibly ototoxic at concentrations that are relevant to the occupational setting. Carbon monoxide appears to exacerbate noise-induced hearing dysfunction. Toluene interacts with noise to induce more severe hearing losses than the noise alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.