Glucose-6-phosphate dehydrogenase (G6PDH) controls the flow of carbon through the pentose phosphate pathway and also produces NADPH needed for maintenance of reduced glutathione and reductive biosynthesis. Hepatic expression of G6PDH is known to respond to several dietary and hormonal factors, but the mechanism behind regulation of this expression has not been characterized. We show that insulin similarly induces expression of endogenous hepatic G6PDH and a reporter construct containing 935 base pairs of the G6PDH promoter linked to luciferase in transient transfection assays. Using well tested and structurally distinct inhibitors of Ras farnesylation, lovastatin and B581, and a specific inhibitor of mitogen-activated protein kinase kinase activation, PD 98059, we show that the Ras/Raf/ mitogen-activated protein kinase pathway is not utilized for the insulin-induced stimulation of G6PDH gene expression in primary rat hepatocytes. Similarly, using well characterized inhibitors of phosphatidylinositol 3-kinase, wortmannin and LY 294002, we show that PI 3-kinase activity is necessary for the induction of G6PDH expression by insulin. Rapamycin, an inhibitor of FRAP protein, which is involved in the activation of pp70 S6 kinase, blocks the insulin induction of G6PDH, suggesting that S6 kinase is also necessary for the insulin induction of G6PDH expression.
Selenium, an essential biological trace element, is an integral component of several enzymes, and its use as a nutritional supplement has been popularized recently due to its potential role in low concentrations as an antioxidant and in higher concentrations as an anticancer agent. Selenium has also been reported to act as an insulin-mimetic agent with regard to normalization of blood glucose levels and regulation of some insulin-mediated metabolic processes. Little work, however, has been done concerning the pathway(s) by which this insulin-mimetic action occurs. In this study, we investigated the mechanism by which selenate exhibits insulin-mimetic properties in two different insulin responsive cell types, primary rat hepatocytes and 3T3 L1 adipocytes. We found that two proteins associated with the insulin signal cascade, the beta-subunit of the insulin receptor and IRS-1, increased in tyrosyl phosphorylation in the presence of selenium. The third identified selenium activated signal protein, MAP kinase, has been implicated not only in the insulin signal transduction pathway but also in other growth factor-mediated responses. Using an in-gel activity assay for MAP kinase, we demonstrated that both the p42 and p44 MAP kinases are activated when either hepatocytes or adipocytes are incubated in the presence of selenate. In addition to the activation of these specific proteins, we found that selenium also eventually profoundly affected overall tyrosyl phosphorylation. Our results therefore show that selenium not only increased the phosphorylation of proteins identified in the insulin signal cascade but also affected the overall phosphorylation state of the cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.