Signal analysis with classical Gabor frames leads to a fixed time–frequency resolution over the whole time–frequency plane. To overcome the limitations imposed by this rigidity, we propose an extension of Gabor theory that leads to the construction of frames with time–frequency resolution changing over time or frequency. We describe the construction of the resulting nonstationary Gabor frames and give the explicit formula for the canonical dual frame for a particular case, the painless case. We show that wavelet transforms, constant-Q transforms and more general filter banks may be modeled in the framework of nonstationary Gabor frames. Further, we present the results in the finite-dimensional case, which provides a method for implementing the above-mentioned transforms with perfect reconstruction. Finally, we elaborate on two applications of nonstationary Gabor frames in audio signal processing, namely a method for automatic adaptation to transients and an algorithm for an invertible constant-Q transform.
Audio signal processing frequently requires time-frequency representations and in many applications, a non-linear spacing of frequency-bands is preferable. This paper introduces a framework for efficient implementation of invertible signal transforms allowing for non-uniform and in particular non-linear frequency resolution. Non-uniformity in frequency is realized by applying nonstationary Gabor frames with adaptivity in the frequency domain. The realization of a perfectly invertible constant-Q transform is described in detail. To achieve real-time processing, independent of signal length, slicewise processing of the full input signal is proposed and referred to as sliCQ transform.By applying frame theory and FFT-based processing, the presented approach overcomes computational inefficiency and lack of invertibility of classical constant-Q transform implementations. Numerical simulations evaluate the efficiency of the proposed algorithm and the method's applicability is illustrated by experiments on real-life audio signals.
Abstract. In this paper we study the reconstruction of a bandlimited signal from samples generated by the integrate and fire model. This sampler allows us to trade complexity in the reconstruction algorithms for simple hardware implementations, and is specially convenient in situations where the sampling device is limited in terms of power, area and bandwidth.Although perfect reconstruction for this sampler is impossible, we give a general approximate reconstruction procedure and bound the corresponding error. We also show the performance of the proposed algorithm through numerical simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.