Morphological criteria have always been considered the benchmark for selecting hepatocellular carcinoma (HCC) patients for liver transplantation (LT). These criteria, which are often inappropriate to express the tumor's biological behavior and aggressiveness, offer only a static view of the disease burden and are frequently unable to correctly stratify the tumor recurrence risk after LT. Alpha-fetoprotein (AFP) and its progression as well as AFP-mRNA, AFP-L3%, des-γ-carboxyprothrombin, inflammatory markers and other serological tests appear to be correlated with post-transplant outcomes. Several other markers for patient selection including functional imaging studies such as (18)F-FDG-PET imaging, histological evaluation of tumor grade, tissue-specific biomarkers, and molecular signatures have been outlined in the literature. HCC growth rate and response to pre-transplant therapies can further contribute to the transplant evaluation process of HCC patients. While AFP, its progression, and HCC response to pre-transplant therapy have already been used as a part of an integrated prognostic model for selecting patients, the utility of other markers in the transplant setting is still under investigation. This article intends to review the data in the literature concerning predictors that could be included in an integrated LT selection model and to evaluate the importance of biological aggressiveness in the evaluation process of these patients.
Vinorelbine and prednisone is a relatively non-toxic combination with modest activity in frail patients with NHL. If initial aggressive chemotherapy has been excluded, this combination could be tried to obtain a temporary palliation.
The hypothesis that increasing cytotoxic dose intensity will improve cancer cure rates is compelling. Although supporting evidence for this hypothesis has accrued for several tumor types, including lymphomas, breast cancer, and testicular cancers, it remains unproven. Smallcell lung cancer is extremely chemo-and radiosensitive, with a response rate of 80% achieved routinely, but few patients are cured by chemoradiotherapy. In this setting, increased cytotoxic dose intensity might improve cure rates. The finding that response rates in small-cell lung cancer correlate with received cytotoxic dose intensity merely confirms that "less is worse" and "more is better." Within conventional ranges, dose intensity can be increased with the support of hematopoietic growth factors and/or by shortening treatments intervals; however, dose intensity could be increased by only 20%-30%, and a survival advantage has not been clearly demonstrated. Given its high chemosensitivity, smallcell lung cancer was one of the first malignancies deemed suitable for increasing dose intensity and even for the use of a megadose with the support of autologous bone marrow transplantation. Some interest is emerging again due to improvements in supportive care, such as the availability of hematopoietic growth factors and peripheral blood progenitor cells. The Oncologist 2007; 12:79 -89
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.