The aim of this paper is to propose a power control strategy for hybrid electrical vehicles. This strategy uses a fuel consumption criterion with battery charge sustaining. It is based on an instantaneous minimization of the equivalent fuel flow. Two comparisons are performed to evaluate the proposed strategy. The first one uses the loss minimization strategy of Seiler and Schröder [1], which appears to be realistic and efficient for real-time control. This strategy is also based on an instantaneous optimization and allows the battery state of charge to be taken into account. The second comparison is made with an optimal solution found for a given driving schedule. Although not realistic for real-time control, this solution is derived through a global optimization algorithm, the well-known simulated annealing method.
This paper describes a proton exchange membrane (PEM) fuel cell system model for automotive applications that includes an air compressor, cooling system, and other auxiliaries. The fuel cell system model has been integrated into a vehicle performance simulator that determines fuel economy and allows consideration of control strategies. Significant fuel cell system efficiency improvements may be possible through control of the air compressor and other auxiliaries. Fuel cell system efficiency results are presented for two limiting air compressor cases: ideal control and no control. Extension of the present analysis to hybrid configurations consisting of a fuel cell system and battery is currently under study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.