Dark matter is one of the greatest unsolved mysteries in cosmology at the present time. About 80% of the universe's gravitating matter is non-luminous, and its nature and distribution are for the most part unknown. In this paper, we will outline the history, astrophysical evidence, candidates, and detection methods of dark matter, with the goal to give the reader an accessible but rigorous introduction to the puzzle of dark matter. This review targets advanced students and researchers new to the field of dark matter, and includes an extensive list of references for further study.
Theoretical calculations of neutralino cross sections with various nuclei are of great interest to direct dark matter searches such as CDMS, EDELWEISS, ZEPLIN, and other experiments. These cross sections and direct detection rates are generally computed with standard, one or two parameter model-dependent nuclear form factors, which may not exactly mirror the actual form factor for the particular nucleus in question. As is well known, elastic electron scattering can allow for very precise determinations of nuclear form factors and hence nuclear charge densities for spherical or nearspherical nuclei. We use charge densities derived from elastic electron scattering data to calculate model independent form factors for various target nuclei important in dark matter searches, such as Si, Ge, S, Ca and others. We have found that for nuclear recoils in the range of 1-100 keV significant differences in cross sections and rates exist when the model independent form factors are used. DarkSUSY, a publicly-available advanced numerical package for neutralino dark matter calculations, has been modified to include these model independent form factors for select nuclei; these modifications will be available with the code in the next public release, and will allow for a more accurate determination of the neutralino spin independent scattering cross sections and rates with nuclear detectors.
Here we estimate the magnitude of the signals expected for realistic cosmic neutrino backgrounds in detectors attempting to measure the mechanical forces exerted on macroscopic targets by the elastic scattering of relic neutrinos. We study effects proportional to the weak coupling constant G F and to G F 2 for Dirac and Majorana neutrinos, either relativistic or nonrelativistic, both gravitationally bound or not.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.