Vancomycin is widely used against methicillin-resistant Staphylococcus aureus infections, but it is associated with many adverse effects such as nephrotoxicity, ototoxicity, gastrointestinal disturbances, blood disorders, and two types of hypersensitivity reactions – an anaphylactoid reaction known as “red man syndrome” and anaphylaxis. We report a case of a 23-year-old man who developed a vancomycin-induced anaphylactic reaction in the treatment of methicillin-resistant Staphylococcus aureus infection.
Objective:
Left ventricle (LV) geometry and dyssynchrony are associated with LV remodeling after acute myocardial infarction (AMI). The aim of this prospective study was to assess the diagnostic value of new three-dimensional echocardiography (3DE) parameters [sphericity (SI) and systolic dyssynchrony indexes (SDI)] for the prediction of LV remodeling after AMI and to compare them with two-dimensional echocardiography (2DE) parameters.
Methods:
2DE and 3DE were performed in 75 patients with AMI within 3 days from the onset of MI and 6 months later. LV remodeling was defined as a ≥15% increase in the LV end-diastolic volume (EDV) at follow-up. 3D SI was calculated by dividing EDV by the volume of a sphere whose diameter was derived from the major end-diastolic LV long axis. SDI was considered as a standard deviation of the time from cardiac cycle onset to minimum systolic volume in 16 LV segments.
Results:
LV remodeling was identified in 34 (45%) patients using the 2DE method and in 22 (29%) patients using the 3DE method. Evaluated 3DE parameters, such as EDV [area under the receiver operating characteristic (ROC) curve (AUC) 0.742, sensitivity 71%, specificity 79%], end-systolic volume (AUC 0.729, sensitivity 69%, specificity 78%), SDI (AUC 0.777, sensitivity 73%, specificity 77%), and SI, had significant prognostic value for LV remodeling. According to the AUC, the highest predictive value had 3D SI (AUC 0.957, sensitivity 90%, specificity 91%).
Conclusion:
3DE parameters, especially 3D SI and SDI, play important roles in the prediction of LV remodeling after AMI and can be used in clinical practice.
Background. Cardiac side effects associated with anthracycline-based treatment may seriously compromise the prognosis of patients with breast cancer (BC). Evidence shows that genes that operate in drug metabolism can influence the risk of anthracycline-induced cardiotoxicity (AIC). ATP-binding cassette (ABC) transporters could serve as one of the potential biomarkers for AIC risk stratification. We aimed to determine the link between single-nucleotide polymorphisms (SNPs) in several ABC genes (ABCB1 rs1045642, ABCC1 rs4148350, ABCC1 rs3743527) and cardiotoxicity. Methods. The study included 71 patients with BC, who were treated with doxorubicin-based chemotherapy. Two-dimensional echocardiography and speckle-tracking echocardiography were performed. AIC was defined as a new decrease of 10 percentage points in the left ventricular ejection fraction (LVEF). SNPs in ABCB1 and ABCC1 genes were evaluated using real-time PCR. Results. After a cumulative dose of 236.70 mg/m2 of doxorubicin, 28.2% patients met the criteria of AIC. Patients who developed AIC had a larger impairment in left ventricular systolic function compared to those who did not develop AIC (LVEF: 50.20 ± 2.38% vs. 55.41 ± 1.13%, p < 0.001; global longitudinal strain: −17.03 ± 0.52% vs. −18.40 ± 0.88%, p < 0.001). The ABCC1 rs4148350 TG genotype was associated with higher rates of cardiotoxicity (TG vs. GG OR = 8.000, 95% CI = 1.405–45.547, p = 0.019). Conclusions. The study showed that ABCC1 rs4148350 is associated with AIC and could be a potential biomarker to assess the risk of treatment side effects in patients with BC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.