Side channel attacks provide an effective way to extract secret information from the execution of cryptographic algorithms run on a variety of computing devices. One of the crucial steps for a side channel attack to succeed is the capability to locate the time instant in which the cryptographic primitive being attacked is effectively leaking information on the side channel itself, and synchronize the data obtained from the measurements on that instant. In this work, we propose an efficient and effective solution relying on the digital signal processing technique known as matched filters. We derive our matched filter with a small amount of profiling information which can be obtained from a device matching the one under attack. Our technique reliably identifies the cryptographic operation being computed, even when system interrupts or software multithreading are enabled on our target platform. We validate our approach through a successful attack against an unprotected AES implementation running on a Cortex-M4-based microcontroller.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.