Abstract. Mountainous regions are often considered pristine environments; however they can be affected by pollutants emitted in more populated and industrialised areas, transported by regional winds. Based on experimental evidence, further supported by modelling tools, here we demonstrate and quantify the impact of air masses transported from the Po Valley, a European atmospheric pollution hotspot, to the northwestern Alps. This is achieved through a detailed investigation of the phenomenology of near-range (a few hundred kilometres), trans-regional transport, exploiting synergies of multi-sensor observations mainly focussed on particulate matter. The explored dataset includes vertically resolved data from atmospheric profiling techniques (automated lidar ceilometers, ALCs), vertically integrated aerosol properties from ground (sun photometer) and space, and in situ measurements (PM10 and PM2.5, relevant chemical analyses, and aerosol size distribution). During the frequent advection episodes from the Po basin, all the physical quantities observed by the instrumental setup are found to significantly increase: the scattering ratio from ALC reaches values >30, aerosol optical depth (AOD) triples, surface PM10 reaches concentrations >100 µg m−3 even in rural areas, and contributions to PM10 by secondary inorganic compounds such as nitrate, ammonium, and sulfate increase up to 28 %, 8 %, and 17 %, respectively. Results also indicate that the aerosol advected from the Po Valley is hygroscopic, smaller in size, and less light-absorbing compared to the aerosol type locally emitted in the northwestern Italian Alps. In this work, the phenomenon is exemplified through detailed analysis and discussion of three case studies, selected for their clarity and relevance within the wider dataset, the latter being fully exploited in a companion paper quantifying the impact of this phenomenology over the long-term (Diémoz et al., 2019). For the three case studies investigated, a high-resolution numerical weather prediction model (COSMO) and a Lagrangian tool (LAGRANTO) are employed to understand the meteorological mechanisms favouring transport and to demonstrate the Po Valley origin of the air masses. In addition, a chemical transport model (FARM) is used to further support the observations and to partition the contributions of local and non-local sources. Results show that the simulations are important to the understanding of the phenomenon under investigation. However, in quantitative terms, modelled PM10 concentrations are 4–5 times lower than the ones retrieved from the ALC and maxima are anticipated in time by 6–7 h. Underestimated concentrations are likely mainly due to deficiencies in the emission inventory and to water uptake of the advected particles not fully reproduced by FARM, while timing mismatches are likely an effect of suboptimal simulation of up-valley and down-valley winds by COSMO. The advected aerosol is shown to remarkably degrade the air quality of the Alpine region, with potential negative effects on human health, climate, and ecosystems, as well as on the touristic development of the investigated area. The findings of the present study could also help design mitigation strategies at the trans-regional scale in the Po basin and suggest an observation-based approach to evaluate the outcome of their implementation.
Abstract. This work evaluates the impact of trans-regional aerosol transport from the Po basin on particulate matter levels (PM10) and physico-chemical characteristics in the northwestern Alps. To this purpose, we exploited a multi-sensor, multi-platform database over a 3-year period (2015–2017) accompanied by a series of numerical simulations. The experimental setup included operational (24/7) vertically resolved aerosol profiles by an automated lidar ceilometer (ALC), vertically integrated aerosol properties by a Sun/sky photometer, and surface measurements of aerosol mass concentration, size distribution and chemical composition. This experimental set of observations was then complemented by modelling tools, including numerical weather prediction (NWP), trajectory statistical (TSM) and chemical transport (CTM) models, plus positive matrix factorisation (PMF) on both the PM10 chemical speciation analyses and particle size distributions. In a first companion study, we showed and discussed through detailed case studies the 4-D phenomenology of recurrent episodes of aerosol transport from the polluted Po basin to the northwestern Italian Alps. Here we draw more general and statistically significant conclusions on the frequency of occurrence of this phenomenon, and on the quantitative impact of this regular, wind-driven, aerosol-rich “atmospheric tide” on PM10 air-quality levels in this alpine environment. Based on an original ALC-derived classification, we found that an advected aerosol layer is observed at the receptor site (Aosta) in 93 % of days characterized by easterly winds (i.e. from the Po basin) and that the longer the time spent by air masses over the Po plain the higher this probability. Frequency of these advected aerosol layers was found to be rather stable over the seasons with about 50 % of the days affected. Duration of these advection events ranges from few hours up to several days, while aerosol layer thickness ranges from 500 up to 4000 m. Our results confirm this phenomenon to be related to non-local emissions, to act at the regional scale and to largely impact both surface levels and column-integrated aerosol properties. In Aosta, PM10 and aerosol optical depth (AOD) values increase respectively up to factors of 3.5 and 4 in dates under the Po Valley influence. Pollution transport events were also shown to modify the mean chemical composition and typical size of particles in the target region. In fact, increase in secondary species, and mainly nitrate- and sulfate-rich components, were found to be effective proxies of the advections, with the transported aerosol responsible for at least 25 % of the PM10 measured in the urban site of Aosta, and adding up to over 50 µg m−3 during specific episodes, thus exceeding alone the EU established daily limit. From a modelling point of view, our CTM simulations performed over a full year showed that the model is able to reproduce the phenomenon, but markedly underestimates its impact on PM10 levels. As a sensitivity test, we employed the ALC-derived identification of aerosol advections to re-weight the emissions from outside the boundaries of the regional domain in order to match the observed PM10 field. This simplified exercise indicated that an increase in such “external” emissions by a factor of 4 in the model is needed to halve the model PM10 maximum deviations and to significantly reduce the PM10 normalised mean bias forecasts error (from −35 % to 5 %).
The effect of COVID-19 confinement regulations on air quality in the northwestern Alps is assessed here based on measurements at five valley sites in different environmental contexts. Surface concentrations of nitrogen oxides (NO and NO2), ozone (O3), particulate matter (PM2.5 and PM10), together with a thorough microphysical (size), chemical, and optical (light absorption) aerosol characterisation, complemented by observations along the vertical column are considered. Even in the relatively pristine environment of the Alps, the «lockdown effect» is well discernible, both in the early confinement phase and in late 2020. The variations observed during the first confinement period in the city of Aosta (−61% NO, −43% NO2, +5% O3, +9% PM2.5, −12% PM10, relative to average 2015–2019 conditions) are attributed to the competing effects of air pollution lockdown-induced changes (−74%, −52%, +18%, −13%, −27%, relative to the counterfactual scenario for 2020 provided by a predictive statistical model trained on past measurements) and meteorology (+52%, +18%, −11%, +25%, +20%, relative to average conditions). These changes agree well with the ones obtained from a chemical transport model with modified emissions according to the restrictions. With regard to column-integrated quantities and vertical profiles, the NO2 column density decreases by >20% due to the lockdown, whereas tropospheric aerosols are mainly influenced by large-scale dynamics (transport of secondary particles from the Po basin and mineral dust from the Sahara desert and the Caspian Sea), except a shallow layer about 500 m thick close to the surface, possibly sensitive to curtailed emissions (especially exhaust and non-exhaust particles from road traffic and fugitive emissions from the industry).
Abstract. Mountainous regions are often considered pristine environments, however they can be affected by pollutants emitted in more populated and industrialised areas, transported by regional winds. Based on experimental evidence, further supported by modelling tools, we demonstrate and quantify here the impact of air masses transported from the Po Valley, a European atmospheric pollution hotspot, to the northwestern Alps. This is achieved through a detailed investigation of the phenomenology of near-range (few hundreds km), trans-regional transport, exploiting synergies of multi-sensor observations mainly focussed on particulate matter. The explored dataset includes vertically-resolved data from atmospheric profiling techniques (Automated LiDAR-Ceilometers, ALC), vertically-integrated aerosol properties from ground (sun photometer) and space, and in situ measurements (PM10 and PM2.5, relevant chemical analyses, and aerosol size distribution). During the frequent advection episodes from the Po basin, all the physical quantities observed by the instrumental setup are found to significantly increase: the scattering ratio from ALC reaches values > 30, AOD triplicates, surface PM10 reaches concentrations > 100 µg/m3 even in rural areas, secondary inorganic compounds such as nitrate, ammonium and sulfate increase up to 28 %, 8 % and 17 % of the total PM10 mass, respectively. Results also indicate that the advected aerosol is smaller in size and less light-absorbing compared to the aerosol type locally-emitted in the northwestern Italian Alps, and hygroscopic. In this work, the phenomenon is exemplified through detailed analysis and discussion of three case studies, selected for their clarity and relevance within the wider dataset, the latter being fully exploited in a companion paper quantifying the impact of this phenomenology over the long-term (Diémoz et al., 2018). For the three case studies investigated, a high-resolution numerical weather prediction model (COSMO) and a lagrangian tool (LAGRANTO) are employed to understand the meteorological mechanisms favouring the transport and to demonstrate the Po Valley origin of the air masses. In addition, a chemical transport model (FARM) is used to further support the observations and to partition the contributions of local and non-local sources. Results show that the simulations are not able to adequately reproduce the measurements (with modelled PM10 concentrations 4–5 times lower than the ones retrieved from the ALC, and maxima anticipated by 6–7 hours), likely owing to deficiencies in the emission inventory and particle water uptake not fully taken into account. The advected aerosol is shown to remarkably degrade the air quality of the Alpine region, with potential negative effects on human health, climate and ecosystems, as well as on the touristic development of the investigated area. The findings of the present study could also help design mitigation strategies at the trans–regional scale in the Po basin, and suggest an observations-based approach to evaluate the outcome of their implementation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.