Viscoelastic, interfacial properties, and morphological data were employed to predict the thermal and mechanical properties of compatibilized poly(lactic acid) (PLA)/thermoplastic polyurethane (TPU) blends. The combination of interfacial thickness measured by contact angle and entanglement density determined by dynamical mechanical analysis analyze data was employed to evaluate the mechanical behavior of PLA/TPU blends with and without ethylene-butyl acrylate-glycidyl methacrylate (EBG) compatibilization agent. The PLA/TPU blend (70/30 wt %) was prepared in a Haake internal mixer at 190 C and compatibilized with different contents of EBG. The evaluation of the interfacial properties revealed an increase in the interfacial layer thickness of the PLA/TPU blend with EBG. The scanning electronic microscopy images showed a drastic reduction in the size of the dispersed phase by increasing the compatibilizer agent EBG content in the blend. The compatibilization of the PLA/TPU blends improved both the Izod impact strength and yield stress by 38 and 33%, respectively, in comparison with neat PLA/TPU blend. The addition of EBG into PLA/TPU blends significantly increased the entanglement density and the PLA toughening but resulted in a decrease of PLA deformation at break. The PLA and TPU glass transitions were affected by the EBG, suggesting that the PLA and TPU domains were partially miscible.
Rheological and interfacial tension data were employed to predict the morphology and thermal and mechanical properties of noncompatibilized and compatibilized poly(lactic acid) (PLA)/thermoplastic elastomer (TPE) blends. PLA was melt blended with thermoplastic polyurethane (TPU) and ethylene elastomer (EE) and compatibilized by ethylene-butyl acrylate-glycidyl methacrylate (EBG) in an internal mixer chamber. Both TPU and EE TPEs have higher viscosities than PLA, and the interfacial properties evaluated have revealed better adhesion between domains of PLA-TPU. The efficiency of the compatibilizer agent EBG depended on the TPE type inferred by modifications in the scanning electron microscopy images of PLA/TPE blends and by the Izod impact strength (improved by 23%). The EBG was more effective in the PLA/TPU blend. The TPEs and EBG did not affect the PLA thermal stability, and no thermal event was observed in the usual PLA extrusion and injection temperature range.
The combination of rheological and interfacial properties is utilized in this work to explain the thermal and mechanical properties of a random polypropylene copolymer (RPP) toughened with an ethylene-propylene copolymer (EPR). RPP/EPR blends are directly prepared by injection molding. The EPR exhibits higher viscosity in comparison with the RPP over the evaluated shear rate, while the RPP/EPR blends show similar viscosities at high shear rates. The interfacial properties indicate a strong interaction between the RPP and EPR domains. Differential scanning calorimetry analyses indicate that the EPR does not act as a nucleating agent for the RPP, with the RPP crystallinity only decreasing at high EPR contents, suggesting that the EPR can modify the RPP crystallite size. Scanning electron micrographs of the blends demonstrate a ductile fracture surface, indicating that EPR can increase the RPP tenacity. The RPP impact strength is improved by up to 102% in the RPP/EPR 90/10 wt.% blend, while the RPP deformation at break is increased from 183% to 246% after the incorporation of 10% EPR. The tensile strengths of the RPP and RPP/EPR blends are very similar, indicating that the RPP achieves a good balance between stiffness and toughness after being blended with the EPR.
Direitos para esta edição cedidos à Atena Editora pelos autores. Open access publication by Atena Editora Todo o conteúdo deste livro está licenciado sob uma Licença de Atribuição Creative Commons. Atribuição-Não-Comercial-NãoDerivativos 4.0 Internacional (CC BY-NC-ND 4.0). O conteúdo dos artigos e seus dados em sua forma, correção e confiabilidade são de responsabilidade exclusiva dos autores, inclusive não representam necessariamente a posição oficial da Atena Editora. Permitido o download da obra e o compartilhamento desde que sejam atribuídos créditos aos autores, mas sem a possibilidade de alterá-la de nenhuma forma ou utilizá-la para fins comerciais.Todos os manuscritos foram previamente submetidos à avaliação cega pelos pares, membros do Conselho Editorial desta Editora, tendo sido aprovados para a publicação com base em critérios de neutralidade e imparcialidade acadêmica.A Atena Editora é comprometida em garantir a integridade editorial em todas as etapas do processo de publicação, evitando plágio, dados ou resultados fraudulentos e impedindo que interesses financeiros comprometam os padrões éticos da publicação. Situações suspeitas de má conduta científica serão investigadas sob o mais alto padrão de rigor acadêmico e ético.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.