Mitochondria sense changes resulting from the ischemia and subsequent reperfusion of an organ and mitochondrial reactive oxygen species (ROS) production initiates a series of events, which over time result in the development of full-fledged ischemia-reperfusion injury (IRI), severely affecting graft function and survival after transplantation. ROS activate the innate immune system, regulate cell death, impair mitochondrial and cellular performance and hence organ function. Arresting the development of IRI before the onset of ROS production is currently not feasible and clinicians are faced with limiting the consequences. Ex vivo machine perfusion has opened the possibility to ameliorate or antagonize the development of IRI and may be particularly beneficial for extended criteria donor organs. The molecular events occurring during machine perfusion remain incompletely understood. Accumulation of succinate and depletion of adenosine triphosphate (ATP) have been considered key mechanisms in the initiation; however, a plethora of molecular events contribute to the final tissue damage. Here we discuss how understanding mitochondrial dysfunction linked to IRI may help to develop novel strategies for the prevention of ROS-initiated damage in the evolving era of machine perfusion.
participated in data collection, data analysis, and critical revision of the article. C.I. and A.G. contributed reagents, analytic tools, and participated in data analysis. M.R. and H.U. participated in data analysis and statistical support. D.Ö. and J.T. supported the study, contributed research advice, and revised the article critically.
Background
Given the susceptibility of organs to ischaemic injury, alternative preservation methods to static cold storage (SCS), such as normothermic machine perfusion (NMP) are emerging. The aim of this study was to perform a comparison between NMP and SCS in liver transplantation with particular attention to bile duct lesions.
Methods
The outcomes of 59 consecutive NMP-preserved donor livers were compared in a 1 : 1 propensity score-matched fashion to SCS control livers. Postoperative complications, patient survival, graft survival and bile duct lesions were analysed.
Results
While patients were matched for cold ischaemia time, the total preservation time was significantly longer in the NMP group (21 h versus 7 h, P < 0.001). Patient and graft survival rates at 1 year were 81 versus 82 per cent (P = 0.347) and 81 versus 79 per cent (P = 0.784) in the NMP and SCS groups, respectively. The postoperative complication rate was comparable (P = 0.086); 37 per cent NMP versus 34 per cent SCS patients had a Clavien-Dindo grade IIIb or above complication. There was no difference in early (30 days or less) (NMP 22 versus SCS 19 per cent, P = 0.647) and late (more than 30 days) (NMP 27 versus SCS 36 per cent, P = 0.321) biliary complications. However, NMP-preserved livers developed significantly fewer ischaemic-type bile duct lesions (NMP 3 versus SCS 14 per cent, P = 0.047).
Conclusion
The use of NMP allowed for a significantly prolonged organ preservation with a lower rate of observed ischaemic-type bile duct lesions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.