Six commercial biocontrol agents (BCAs, containing Aureobasidium pullulans, Bacillus amyloliquefaciens, Bacillus amyloliquefaciens plantarum, Bacillus subtilis, Pythium oligandrum, or Trichoderma atroviride) were applied to ripening berries that were then incubated at one of four temperatures (T, 15, 20, 25, and 30°C) and one of four relative humidity levels (RH, 60, 80, 90, and 100%). After 1 to 13 days of incubation (BCA colonization period), the berries were inoculated with conidia of Botrytis cinerea and kept at 25°C and 100% RH for 7 days, at which time Botrytis bunch rot (BBR) was assessed. The response of BBR control to T/RH conditions and BCA colonization period differed among BCAs; the coefficients of variation among the BCAs ranged from 44.7 to 72.4%. An equation was developed that accounted for the combined effects of T, RH, and BCA colonization period on BBR control. The equation, which had an R 2 >0.94, could help farmers select the BCA to be used for a specific application based on weather conditions at the time of treatment and in the following days.
Although the use of biocontrol agents (BCAs) to manage plant pathogens has emerged as a sustainable means for disease control, global reliance on their use remains relatively insignificant and the factors influencing their efficacy remain unclear. In this work, we further developed an existing generic model for biocontrol of foliar diseases, and we parametrized the model for the Botrytis cinerea–grapevine pathosystem. The model was operated under three climate types to study the combined effects on BCA efficacy of four factors: (i) BCA mechanism of action, (ii) timing of BCA application with respect to timing of pathogen infection (preventative vs. curative), (iii) temperature and moisture requirements for BCA growth, and (iv) BCA survival capability. All four factors affected biocontrol efficacy, but factors iii and iv accounted for > 90% of the variation in model simulations. In other words, the most important factors affecting BCA efficacy were those related to environmental conditions. These findings indicate that the environmental responses of BCAs should be considered during their selection, BCA survival capability should be considered during both selection and formulation, and weather conditions and forecasts should be considered at the time of BCA application in the field.
Botrytis bunch rot (BBR) of grapevine, caused by Botrytis cinerea, is commonly managed by fungicide (FUN) sprays at flowering (A), at prebunch closure (B), at veraison (C), and before harvest. Applications at A, B, and C are recommended to reduce B. cinerea colonization of bunch trash and the production of conidia during berry ripening. The effects of these applications were previously evaluated as reductions in BBR severity at harvest rather than as reductions in bunch trash colonization and sporulation by B. cinerea. This study investigated the effects of FUNs (a commercial mixture of fludioxonil and cyprodonil), biological control agents (BCAs; Aureobasium pullulans and Trichoderma atroviride), and botanicals (BOTs; a commercial mixture of eugenol, geraniol, and thymol) applied at different timings (A, B, C, or ABC) compared with a nontreated control (NT) on B. cinerea bunch trash colonization and sporulation in vineyards. The ability of B. cinerea to colonize the bunch trash (as indicated by B. cinerea DNA content) and sporulate (as indicated by the number of conidia produced under optimal laboratory conditions) was highly variable, and this variability was higher between years (2015 to 2018) than among the three vineyards and three sampling times (i.e., 1 week after applications at A, B, and C). B. cinerea sporulation on bunch trash was significantly lower in plots treated with FUN than in NT in only 3 of 18 cases (3 vineyards × 2 years × 3 sampling times). FUN applications, however, significantly reduced B. cinerea colonization of bunch trash compared with NT; for colonization, BCA efficacy was similar to that of FUN, but BOT efficacy was variable. For all products, colonization reduction was the same with application at A versus ABC, meaning that the effect of an early season application lasted from flowering to 1 week after veraison. These results indicate that the early season control of B. cinerea is important to reduce the saprophytic colonization of bunch trash, especially when the risk of BBR is high.
A mechanistic model was developed to predict secondary infections of Plasmopara viticola and their severity as influenced by environmental conditions; the model incorporates the processes of sporangia production and survival on downy mildew (DM) lesions, dispersal and deposition, and infection. The model was evaluated against observed data (collected in a 3-year vineyard) for its accuracy to predict periods with no sporangia (i.e., for negative prognosis) or with peaks of sporangia, so that growers can identify periods with no/low risk or high risk. The model increased the probability to correctly predict no sporangia [P(P−O−) = 0.67] by two times compared to the prior probability, with fewer than 3% of the total sporangia found in the vineyard being sampled when not predicted by the model. The model also correctly predicted peaks of sporangia, with only 1 of 40 peaks unpredicted. When evaluated for the negative prognosis of infection periods, the model showed a posterior probability for infection not to occur when not predicted P(P−O−) = 0.87 with only 9 of 108 real infections not predicted; these unpredicted infections were mild, accounting for only 4.4% of the total DM lesions observed in the vineyard. In conclusion, the model was able to identify periods in which the DM risk was nil or very low. It may, therefore, help growers avoid fungicide sprays when not needed and lengthen the interval between two sprays, i.e., it will help growers move from calendar-based to risk-based fungicide schedules for the control of P. viticola in vineyards.
Late blight caused by the oomycete Phytophthora infestans is a disease of potato and tomato of worldwide relevance and is widespread throughout Europe and the Mediterranean region. While pathogen populations in northern Europe have been sampled and characterized for many years, the genetic structure of populations from southern Europe, including Italy, has been less studied. Between 2018 and 2019, we collected 91 samples of P. infestans from potato and tomato crops in Italy, Algeria, and Tunisia on FTA cards and genotyped them using 12-plex microsatellites. These samples were compared to genotypes of P. infestans previously collected within the framework of the EuroBlight network and from published sources. Four clonal lineages were identified: 13_A2 (Blue 13), 2_A1, 23_A1, and 36_A2. Two other isolates collected could not be matched to any currently known clonal lineage. The 13_A2 and 36_A2 lineages were found exclusively in southern Italy and Algeria, while 2_A1 was only found in Algeria. This is the first report of the 36_A2 lineage in Italy. Two isolates from Solanum nigrum were 13_A2, suggesting this weed host could be a reservoir of inoculum. The 23_A1 lineage was found widely on infected tomato crops in Italy and
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.