Objective This study was undertaken to assess the impact of immunosuppressive and immunomodulatory therapies on the severity of coronavirus disease 2019 (COVID‐19) in people with multiple sclerosis (PwMS). Methods We retrospectively collected data of PwMS with suspected or confirmed COVID‐19. All the patients had complete follow‐up to death or recovery. Severe COVID‐19 was defined by a 3‐level variable: mild disease not requiring hospitalization versus pneumonia or hospitalization versus intensive care unit (ICU) admission or death. We evaluated baseline characteristics and MS therapies associated with severe COVID‐19 by multivariate and propensity score (PS)‐weighted ordinal logistic models. Sensitivity analyses were run to confirm the results. Results Of 844 PwMS with suspected (n = 565) or confirmed (n = 279) COVID‐19, 13 (1.54%) died; 11 of them were in a progressive MS phase, and 8 were without any therapy. Thirty‐eight (4.5%) were admitted to an ICU; 99 (11.7%) had radiologically documented pneumonia; 96 (11.4%) were hospitalized. After adjusting for region, age, sex, progressive MS course, Expanded Disability Status Scale, disease duration, body mass index, comorbidities, and recent methylprednisolone use, therapy with an anti‐CD20 agent (ocrelizumab or rituximab) was significantly associated (odds ratio [OR] = 2.37, 95% confidence interval [CI] = 1.18–4.74, p = 0.015) with increased risk of severe COVID‐19. Recent use (<1 month) of methylprednisolone was also associated with a worse outcome (OR = 5.24, 95% CI = 2.20–12.53, p = 0.001). Results were confirmed by the PS‐weighted analysis and by all the sensitivity analyses. Interpretation This study showed an acceptable level of safety of therapies with a broad array of mechanisms of action. However, some specific elements of risk emerged. These will need to be considered while the COVID‐19 pandemic persists. ANN NEUROL 2021;89:780–789
Human regulatory T cells (Treg cells) that develop from conventional T cells (Tconv cells) following suboptimal stimulation via the T cell antigen receptor (TCR) (induced Treg cells (iTreg cells)) express the transcription factor Foxp3, are suppressive, and display an active proliferative and metabolic state. Here we found that the induction and suppressive function of iTreg cells tightly depended on glycolysis, which controlled Foxp3 splicing variants containing exon 2 (Foxp3-E2) through the glycolytic enzyme enolase-1. The Foxp3-E2–related suppressive activity of iTreg cells was altered in human autoimmune diseases, including multiple sclerosis and type 1 diabetes, and was associated with impaired glycolysis and signaling via interleukin 2. This link between glycolysis and Foxp3-E2 variants via enolase-1 shows a previously unknown mechanism for controlling the induction and function of Treg cells in health and in autoimmunity.
We evaluated the effect of DMTs on Covid‐19 severity in patients with MS, with a pooled‐analysis of two large cohorts from Italy and France. The association of baseline characteristics and DMTs with Covid‐19 severity was assessed by multivariate ordinal‐logistic models and pooled by a fixed‐effect meta‐analysis. 1066 patients with MS from Italy and 721 from France were included. In the multivariate model, anti‐CD20 therapies were significantly associated (OR = 2.05, 95%CI = 1.39–3.02, p < 0.001) with Covid‐19 severity, whereas interferon indicated a decreased risk (OR = 0.42, 95%CI = 0.18–0.99, p = 0.047). This pooled‐analysis confirms an increased risk of severe Covid‐19 in patients on anti‐CD20 therapies and supports the protective role of interferon.
Cognitive impairment, with particular involvement of processing speed and memory, predicts disability progression and SP conversion in newly diagnosed RRMS, highlighting the importance of cognitive assessment from the beginning of MS.
BackgroundThe approval of 9-δ-tetrahydocannabinol and cannabidiol (THC:CBD) oromucosal spray (Sativex) for the management of treatment-resistant multiple sclerosis (MS) spasticity opened a new opportunity for many patients. The aim of our study was to describe Sativex effectiveness and adverse events profile in a large population of Italian patients with MS in the daily practice setting.MethodsWe collected data of all patients starting Sativex between January 2014 and February 2015 from the mandatory Italian medicines agency (AIFA) e-registry. Spasticity assessment by the 0–10 numerical rating scale (NRS) scale is available at baseline, after 1 month of treatment (trial period), and at 3 and 6 months.ResultsA total of 1615 patients were recruited from 30 MS centres across Italy. After one treatment month (trial period), we found 70.5% of patients reaching a ≥20% improvement (initial response, IR) and 28.2% who had already reached a ≥30% improvement (clinically relevant response, CRR), with a mean NRS score reduction of 22.6% (from 7.5 to 5.8). After a multivariate analysis, we found an increased probability to reach IR at the first month among patients with primary and secondary progressive MS, (n=1169, OR 1.4 95% CI 1.04 to 1.9, p=0.025) and among patients with >8 NRS score at baseline (OR 1.8 95% CI 1.3–2.4 p<0.001). During the 6 months observation period, 631(39.5%) patients discontinued treatment. The main reasons for discontinuation were lack of effectiveness (n=375, 26.2%) and/or adverse events (n=268, 18.7%).ConclusionsSativex can be a useful and safe option for patients with MS with moderate to severe spasticity resistant to common antispastic drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.