Objective. Alphaviruses such as chikungunya virus, Sindbis virus, o'nyong-nyong virus, Mayaro virus, and Ross River virus (RRV), are commonly associated with arthralgias and overt arthritides worldwide. Understanding the processes by which arthritogenic viruses cause disease is a prerequisite in the quest for better treatments. In this regard, we have recently established that monocyte/macrophages are mediators of alphavirus-induced arthritis in mice. We hypothesized that chemokines associated with monocyte/ macrophage recruitment may play an important role in disease. The aim of the present investigations was to determine whether bindarit, an inhibitor of monocyte chemotactic protein (MCP) synthesis, could ameliorate alphavirus-induced rheumatic disease in mice.Methods. Using our recently developed mouse model of RRV-induced arthritis, which has many characteristics of RRV disease (RRVD) in humans, the effects of bindarit treatment on RRVD in mice were determined via histologic analyses, immunohistochemistry, flow cytometry, real-time polymerase chain reaction analysis, enzyme-linked immunosorbent assay, and electrophoretic mobility shift assay.Results. Bindarit-treated RRV-infected mice developed mild disease and had substantially reduced tissue destruction and inflammatory cell recruitment as compared with untreated RRV-infected mice. The virus load in the tissues was not affected by bindarit treatment. Bindarit exhibited its activity by down-regulating MCPs, which in turn led to inhibition of cell infiltration and lower production of NF-B and tumor necrosis factor ␣, which are involved in mediating tissue damage.Conclusion. Our data support the use of inhibitors of MCP production in the treatment of arthritogenic alphavirus syndromes and suggest that bindarit may be useful in treating RRVD and other alphavirusinduced arthritides in humans.
AimsBindarit is an original compound with peculiar anti-inflammatory activity due to a selective inhibition of a subfamily of inflammatory chemokines, including the monocyte chemotactic proteins MCP-1/CCL2, MCP-3/CCL7, and MCP-2/CCL8. In this study, we investigated the effect of bindarit on neointima formation using two animal models of arterial injury: rat carotid artery balloon angioplasty and wire-induced carotid injury in apolipoprotein E-deficient (apoE−/−) mice.Methods and resultsTreatment of rats with bindarit (200 mg/kg/day) significantly reduced balloon injury-induced neointima formation by 39% at day 14 without affecting re-endothelialization and reduced the number of medial and neointimal proliferating cells at day 7 by 54 and 30%, respectively. These effects were associated with a significant reduction of MCP-1 levels both in sera and in injured carotid arteries of rats treated with bindarit. In addition, in vitro data showed that bindarit (10–300 µM) reduced rat vascular smooth muscle cell (VSMC) proliferation, migration, and invasion, processes contributing to the injury-induced neointima formation in vivo. Similar results were observed in hypercholesterolaemic apoE−/− mice in which bindarit administration resulted in a 42% reduction of the number of proliferating cells at day 7 after carotid injury and in a 47% inhibition of neointima formation at day 28. Analysis of the cellular composition in neointimal lesions of apoE−/− mice treated with bindarit showed that the relative content of macrophages and the number of VSMCs were reduced by 66 and 30%, respectively, compared with the control group.ConclusionThis study demonstrates that bindarit is effective in reducing neointima formation in both non-hyperlipidaemic and hyperlipidaemic animal models of vascular injury by a direct effect on VSMC proliferation and migration and by reducing neointimal macrophage content. All of these data were associated with the inhibition of MCP-1 production.
A number of pyridazinone derivatives bearing an arylpiperazinylalkyl chain were synthesized and tested icv in a model of acute nociception induced by thermal stimuli in mice (tail flick). The most interesting and potent compound in this series was 6a, which showed an ED(50) = 3.5 microg, a value about 3-fold higher with respect to morphine by the same route of administration. When administered per os, 6a was 4-fold more potent than morphine in the same test, suggesting a significant bioavailability. The same compound also showed high potency in the hot plate test. The antinociceptive effect of 6a was completely reversed by pretreatment with yohimbine both in the hot plate test and in the tail flick test. This demonstrated the involvement of the adrenergic system, which was confirmed by in vitro radioligand binding studies.
PGs are potent mediators of pain and inflammation. PGE synthases (PGES) catalyze the isomerization of PGH(2) into PGE(2). The microsomal (m)PGES-1 isoform serves as an inducible PGES and is responsible for the production of PGE(2), which mediates acute pain in inflammation and fever. The present study was designed to investigate the regulation of expression of mPGES-1 in polarized phagocytes, which represent central, cellular orchestrators of inflammatory reactions. Here, we report that human peripheral blood monocytes did not express mPGES-1. Exposure to LPS strongly induced mPGES-1 expression. Alternatively activated M2 monocytes-macrophages exposed to IL-4, IL-13, or IL-10 did not express mPGES-1, whereas in these cells, IL-4, IL-13, and to a lesser extent, IL-10 or IFN-gamma inhibited LPS-induced, mPGES-1 expression. It is unexpected that polymorphonuclear leukocytes expressed high basal levels of mPGES-1, which was up-regulated by LPS and down-regulated by IL-4 and IL-13. Induction of mPGES-1 and its modulation by cytokines were confirmed at the protein level and correlated with PGE(2) production. Cyclooxygenase 2 expression tested in the same experimental conditions was modulated in monocytes and granulocytes similarly to mPGES-1. Thus, activated M1, unlike alternatively activated M2, mononuclear phagocytes express mPGES-1, and IL-4, IL-13, and IL-10 tune expression of this key enzyme in prostanoid metabolism. Neutrophils, the first cells to enter sites of inflammation, represent a ready-made, cellular source of mPGES-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.