BackgroundThe human activity monitoring technology is one of the most important technologies for ambient assisted living, surveillance-based security, sport and fitness activities, healthcare of elderly people. The activity monitoring is performed in two steps: the acquisition of body signals and the classification of activities being performed. This paper presents a low-cost wearable wireless system specifically designed to acquire surface electromyography (sEMG) and accelerometer signals for monitoring the human activity when performing sport and fitness activities, as well as in healthcare applications.ResultsThe proposed system consists of several ultralight wireless sensing nodes that are able to acquire, process and efficiently transmit the motion-related (biological and accelerometer) body signals to one or more base stations through a 2.4 GHz radio link using an ad-hoc communication protocol designed on top of the IEEE 802.15.4 physical layer. A user interface software for viewing, recording, and analysing the data was implemented on a control personal computer that is connected through a USB link to the base stations. To demonstrate the capability of the system of detecting the user’s activity, data recorded from a few subjects were used to train and test an automatic classifier for recognizing the type of exercise being performed. The system was tested on four different exercises performed by three people, the automatic classifier achieved an overall accuracy of 85.7% combining the features extracted from acceleration and sEMG signals.ConclusionsA low cost wireless system for the acquisition of sEMG and accelerometer signals has been presented for healthcare and fitness applications. The system consists of wearable sensing nodes that wirelessly transmit the biological and accelerometer signals to one or more base stations. The signals so acquired will be combined and processed in order to detect, monitor and recognize human activities.
This paper presents a technique for parametric model estimation of the motor unit action potential (MUAP) from the surface electromyography (sEMG) signal by using homomorphic deconvolution. The cepstrum-based deconvolution removes the effect of the stochastic impulse train, which originates the sEMG signal, from the power spectrum of sEMG signal itself. In this way, only information on MUAP shape and amplitude were maintained, and then, used to estimate the parameters of a time-domain model of the MUAP itself. In order to validate the effectiveness of this technique, sEMG signals recorded during several biceps curl exercises have been used for MUAP amplitude and time scale estimation. The parameters so extracted as functions of time were used to evaluate muscle fatigue showing a good agreement with previously published results.
Sport, fitness, as well as rehabilitation activities, often require the accomplishment of repetitive movements. The correctness of the exercises is often related to the capability of maintaining the required cadence and muscular force. Failure to maintain the required force, also known as muscle fatigue, is accompanied by a shift in the spectral content of the surface electromyography (EMG) signal toward lower frequencies. This paper presents a novel approach for simultaneously obtaining exercise repetition frequency and evaluating muscular fatigue, as functions of time, by only using the EMG signal. The mean frequency of the amplitude spectrum (MFA) of the EMG signal, considered as a function of time, is directly related to the dynamics of the movement performed and to the fatigue of the involved muscles. If the movement is cyclic, MFA will display the same pattern and its average will tend to decrease. These two effects have been simultaneously modeled by a two-component AM-FM model based on the Hilbert transform. The method was tested on signals recorded using a wireless system applied to healthy subjects performing dumbbell biceps curls, dumbbell lateral rises, and bodyweight squats. Experimental results show the excellent performance of the proposed technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.