Our study supports the routine use of subcortical stimulation for language tract identification as a reliable tool for guiding surgical removal of gliomas in or in close proximity to language areas or pathways.
Axonal injury is believed to be a major determinant of adverse outcomes following traumatic brain injury. However, it has been difficult to assess acutely the severity of axonal injury in human traumatic brain injury patients. We hypothesized that microdialysis-based measurements of the brain extracellular fluid levels of tau and neurofilament light chain, two low molecular weight axonal proteins, could be helpful in this regard. To test this hypothesis, 100 kDa cut-off microdialysis catheters were placed in 16 patients with severe traumatic brain injury at two neurological/neurosurgical intensive care units. Tau levels in the microdialysis samples were highest early and fell over time in all patients. Initial tau levels were >3-fold higher in patients with microdialysis catheters placed in pericontusional regions than in patients in whom catheters were placed in normal-appearing right frontal lobe tissue (P = 0.005). Tau levels and neurofilament light-chain levels were positively correlated (r = 0.6, P = 0.013). Neurofilament light-chain levels were also higher in patients with pericontusional catheters (P = 0.04). Interestingly, initial tau levels were inversely correlated with initial amyloid-β levels measured in the same samples (r = -0.87, P = 0.000023). This could be due to reduced synaptic activity in areas with substantial axonal injury, as amyloid-β release is closely coupled with synaptic activity. Importantly, high initial tau levels correlated with worse clinical outcomes, as assessed using the Glasgow Outcome Scale 6 months after injury (r = -0.6, P = 0.018). Taken together, our data add support for the hypothesis that axonal injury may be related to long-term impairments following traumatic brain injury. Microdialysis-based measurement of tau levels in the brain extracellular space may be a useful way to assess the severity of axonal injury acutely in the intensive care unit. Further studies with larger numbers of patients will be required to assess the reproducibility of these findings and to determine whether this approach provides added value when combined with clinical and radiological information.
Summary
Febrile infection–related epilepsy syndrome (FIRES) is a severe epileptic encephalopathy with presumed inflammatory origin and lacking effective treatments. Anakinra is the human recombinant interleukin 1 receptor antagonist clinically used in autoinflammatory or autoimmune conditions. We report a case of FIRES for which the spatial and temporal match between electroencephalography (EEG) and magnetic resonance imaging (MRI) focal alterations provides support for the detrimental synergic interplay between seizures and inflammation that may evolve to permanent focal lesions and progressive brain atrophy in weeks to months. Brain biopsy showed aspects of chronic neuroinflammation with scarce parenchymal lymphocytes. We report the novel evidence that anakinra reduces the relapse of highly recurrent refractory seizures at 1.5 years after FIRES onset. Our evidence, together with previously reported therapeutic effects of anakinra administered since the first days of disease onset, support the hypothesis that interleukin 1β and inflammation‐related factors play a crucial role in seizure recurrence in both the acute and chronic stages of the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.