Molecular dynamics atomistic simulations of solid and liquid benzene have been performed, employing a model intermolecular potential derived from quantum mechanical calculations. The ab initio database includes approximately 200 geometries of the benzene dimer with interaction energies computed at the MP2 level of theory. The accuracy of the modeled force field results is satisfactory. The thermodynamic and structural properties, calculated in the condensed phases, are compared with experimental data and previous simulation results. Single particle and collective dynamical properties are also investigated through the calculation of translational and rotational diffusion coefficients, reorientational dynamics, and viscosities. The agreement of these data with experimental measurements confirms the reliability of the proposed force field.
We have built the liquid crystal phase diagram of several binary mixtures of freely rotating hard spherocylinders employing a second-order virial density functional theory with Parsons scaling, suitably generalized to deal with mixtures and smectic phases. The components have the same diameter and aspect ratio of moderate value, typical of many mesogens. Attention has been paid to smectic-smectic demixing and the types of arrangement that rods can adopt in layered phases. Results are shown to depend on the aspect ratio of the individual components and on the ratio of their lengths. Smectic phases are seen not to easily mix together at sufficiently high pressures. Layered phases where the longer rods are the majority component have a smectic-A structure. In the opposite case, a smectic-A(2) phase is obtained where the shorter particles populate the layers and the longer ones prefer to stay parallel to the latter in the interlayer region.
Using an Onsager-like theory, we have investigated the relationship between the morphology of hard helical particles and the features (pitch and handedness) of the cholesteric phase that they form. We show that right-handed helices can assemble into right- (R) and left-handed (L) cholesterics, depending on their curliness, and that the cholesteric pitch is a non-monotonic function of the intrinsic pitch of particles. The theory leads to the definition of a hierarchy of pseudoscalars, which quantify the difference in the average excluded volume between pair configurations of helices having (R) and (L)-skewed axes. The predictions of the Onsager-like theory are supported by Monte Carlo simulations of the isotropic phase of hard helices, showing how the cholesteric organization, which develops on scales longer than hundreds of molecular sizes, is encoded in the short-range chiral correlations between the helical axes.
Hard helices can be regarded as a paradigmatic elementary model for a number of natural and synthetic soft matter systems, all featuring the helix as their basic structural unit: from natural polynucleotides and polypeptides to synthetic helical polymers; from bacterial flagella to colloidal helices. Here we present an extensive investigation of the phase diagram of hard helices using a variety of methods. Isobaric Monte Carlo numerical simulations are used to trace the phase diagram: on going from the low-density isotropic to the high-density compact phases, a rich polymorphism is observed exhibiting a special chiral screw-like nematic phase and a number of chiral and/or polar smectic phases. We present a full characterization of the latter, showing that they have unconventional features, ascribable to the helical shape of the constituent particles. Equal area construction is used to locate the isotropic-to-nematic phase transition, and results are compared with those stemming from an Onsager-like theory. Density functional theory is also used to study the nematic-to-screw-nematic phase transition: within the simplifying assumption of perfectly parallel helices, we compare different levels of approximation, that is second-and third-virial expansions and Parsons-Lee correction.arXiv:1408.1199v1 [cond-mat.soft] 6 Aug 2014 2
We investigate the isotropic-to-nematic phase transition in systems of hard helical particles, using Onsager theory and Monte Carlo computer simulations. Motivation of this work resides in the ubiquity of the helical shape motif in many natural and synthetic polymers, as well as in the well known importance that the details of size and shape have in determining the phase behaviour and properties of (soft) condensed matter systems. We discuss the differences with the corresponding spherocylinder phase diagram and find that the helix parameters affect the phase behaviour and the existence of the nematic phase. We find that for high helicity Onsager theory significantly departs from numerical simulations even when a modified form of the Parsons-Lee rescaling is included to account for the non-convexity of particles. © 2013 AIP Publishing LLC. [http://dx
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.