In this work, we aim to solve a practical use-case of unsupervised clustering which has applications in predictive maintenance in the energy operations sector using quantum computers. Using only cloud access to quantum computers, we complete a thorough performance analysis of what some current quantum computing systems are capable of for practical applications involving non-trivial midto-high dimensional datasets. We first benchmark how well distance estimation can be performed using two different metrics based on the swap-test, using angle and amplitude data embedding. Next, for the clustering performance analysis, we generate sets of synthetic data with varying cluster variance and compare simulation to physical hardware results using the two metrics. From the results of this performance analysis, we propose a general, competitive, and parallelized version of quantum k-means clustering to avoid some pitfalls discovered due to noisy hardware and apply the approach to a real energy grid clustering scenario. Using real-world German electricity grid data, we show that the new approach improves the balanced accuracy of the standard quantum k-means clustering by 67.8% with respect to the labeling of the classical algorithm.INDEX TERMS Quantum clustering, quantum distance estimation, quantum computing, cloud quantum computing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.