Of wide interest for health is the relation existing between depression, a very common psychological illness, accompanied by anxiety and reduced ability to concentrate, and adult neurogenesis. We will focus on two neurogenic stimuli, fluoxetine and physical exercise, both endowed with the ability to activate adult neurogenesis in the dentate gyrus of the hippocampus, known to be required for learning and memory, and both able to counteract depression. Fluoxetine belongs to the class of selective serotonin reuptake inhibitor (SSRI) antidepressants, which represent the most used pharmacological therapy; physical exercise has also been shown to effectively counteract depression symptoms in rodents as well as in humans. While there is evidence that the antidepressant effect of fluoxetine requires its pro-neurogenic action, exerted by promoting proliferation, differentiation and survival of progenitor cells of the hippocampus, on the other hand fluoxetine exerts also neurogenesis-independent antidepressant effects by influencing the plasticity of the new neurons generated. Similarly, the antidepressant action of running also correlates with an increase of hippocampal neurogenesis and plasticity, although the gene pathways involved are only partially coincident with those of fluoxetine, such as those involved in serotonin metabolism and synapse formation. We further discuss how extra-neurogenic actions are also suggested by the fact that, unlike running, fluoxetine is unable to stimulate neurogenesis during aging, but still displays antidepressant effects. Moreover, in specific conditions, fluoxetine or running activate not only progenitor but also stem cells, which normally are not stimulated; this fact reveals how stem cells have a long-term, hidden ability to self-renew and, more generally, that neurogenesis is subject to complex controls that may play a role in depression, such as the type of neurogenic stimulus or the state of the local niche. Finally, we discuss how fluoxetine or running are effective in counteracting depression originated from stress or neurodegenerative diseases.
In the neurogenic niches—the dentate gyrus of the hippocampus and the subventricular zone (SVZ) adjacent to lateral ventricles—stem cells continue to divide during adulthood, generating progenitor cells and new neurons, and to self-renew, thus maintaining the stem cell pool. During aging, the numbers of stem/progenitor cells in the neurogenic niches are reduced. The preservation of the neurogenic pool is committed to a number of antiproliferative genes, with the role of maintaining the quiescence of neural cells. The cyclin-dependent kinase inhibitor p16Ink4a, whose expression increases with age, controls the expansion of SVZ aging stem cells, since in mice its deficiency prevents the decline of neurogenesis in SVZ. No change of neurogenesis is however observed in the p16Ink4a-null dentate gyrus. Here, we hypothesized that p16Ink4a plays a role as a regulator of the self-renewal of the stem cell pool also in the dentate gyrus, and to test this possibility we stimulated the dentate gyrus neural cells of p16Ink4a-null aging mice with physical exercise, a powerful neurogenic activator. We observed that running highly induced the generation of new stem cells in the p16Ink4a-null dentate gyrus, forcing them to exit from quiescence. Stem cells, notably, are not induced to proliferate by running in wild-type (WT) mice. Moreover, p16Ink4a-null progenitor cells were increased by running significantly above the number observed in WT mice. The new stem and progenitor cells generated new neurons, and continued to actively proliferate in p16Ink4a-null mice longer than in the WT after cessation of exercise. Thus, p16Ink4a prevents aging dentate gyrus stem cells from being activated by exercise. Therefore, p16Ink4a may play a role in the maintenance of dentate gyrus stem cells after stimulus, by keeping a reserve of their self-renewal capacity during aging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.