Many empirical networks display an inherent tendency to cluster, i.e. to form circles of connected nodes. This feature is typically measured by the clustering coefficient (CC). The CC, originally introduced for binary, undirected graphs, has been recently generalized to weighted, undirected networks. Here we extend the CC to the case of (binary and weighted) directed networks and we compute its expected value for random graphs. We distinguish between CCs that count all directed triangles in the graph (independently of the direction of their edges) and CCs that only consider particular types of directed triangles (e.g., cycles). The main concepts are illustrated by employing empirical data on world-trade flows.
This paper studies an agent-based model that bridges Keynesian theories of demandgeneration and Schumpeterian theories of technology-fueled economic growth. We employ the model to investigate the properties of macroeconomic dynamics and the impact of public polices on supply, demand and the "fundamentals" of the economy. We find that the complementarities between factors influencing aggregate demand and drivers of technological change affect both "short-run" fluctuations and long-term growth patterns. From a normative point of view, simulations show a corresponding complementarity between Keynesian and Schumpeterian policies in sustaining long-run growth paths characterized by mild fluctuations and acceptable unemployment levels. The matching or mismatching between innovative exploration of new technologies and the conditions of demand generation appear to suggest the presence of two distinct "regimes" of growth (or absence thereof) characterized by different short-run fluctuations and unemployment levels.
The current economic crisis illustrates a critical need for new and fundamental understanding of the structure and dynamics of economic networks. Economic systems are increasingly built on interdependencies, implemented through trans-national credit and investment networks, trade relations, or supply chains that have proven difficult to predict and control. We need, therefore, an approach that stresses the systemic complexity of economic networks and that can be used to revise and extend established paradigms in economic theory. This will facilitate the design of policies that reduce conflicts between individual interests and global efficiency, as well as reduce the risk of global failure by making economic networks more robust.
This paper studies the statistical properties of the web of import-export relationships among world countries using a weighted-network approach. We analyze how the distributions of the most important network statistics measuring connectivity, assortativity, clustering, and centrality have coevolved over time. We show that all node-statistic distributions and their correlation structure have remained surprisingly stable in the last 20 years -and are likely to do so in the future. Conversely, the distribution of (positive) link weights is slowly moving from a log-normal density towards a power law. We also characterize the autoregressive properties of network-statistics dynamics. We find that network-statistics growth rates are well-proxied by fat-tailed densities like the Laplace or the asymmetric exponential power. Finally, we find that all our results are reasonably robust to a few alternative, economically meaningful, weighting schemes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.